Part XI

Search
Ever-increasing amounts of data are available electronically. These data have varying degrees of **structure**.

- (R)DBMS
- Social graphs
- Web pages
- Unstructured text
- XML
- Text with markup

How can we efficiently store and access such **un-structured data**?

→ success of **search engines** "search"
Let’s start with what we have...

- *E.g.*, four **documents**

<table>
<thead>
<tr>
<th>doc₁</th>
<th>doc₂</th>
<th>doc₃</th>
<th>doc₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.</td>
<td>Fishkeepers often use the term tropical fish to refer only those requiring freshwater, with salt-water tropical fish referred to as marine fish.</td>
<td>Tropical fish are popular aquarium fish, due to their often bright coloration.</td>
<td>In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.</td>
</tr>
</tbody>
</table>

- Say we’re interested in “freshwater fish.”
 → Two **search terms**: “freshwater” and “fish”
Boolean Queries

Query in SQL-style notation:

```sql
SELECT *
FROM Documents AS D
WHERE D.content CONTAINS 'freshwater'
AND D.content CONTAINS 'fish'
```

Idea:
- **Index** to look up *term* → *document*.
 - There will be an index entry for every word in every document.

💡 Execution strategy for the above query?
Boolean Queries

Discussion:

- Returns all documents that contain both search terms.
 - This may be more than we want.

 Google: about 21 million pages with “freshwater” and “fish!”

- Returns nothing else.
 - This may be less than we want.

 \[doc_2\] and \[doc_3\] may be relevant for us, too.

- Returns documents in no specific order.
 - But some documents might be more relevant than others.

 \[ORDER BY\] won’t help!

Boolean Query: (exact match retrieval)

- A predicate precisely tells whether a document belongs to the result.

Ranked Query:

- Results are ranked according to their relevance (to the query).
Goal: Rank documents higher that are closer to the query’s intention.

→ Extract features from each document.
→ Use feature vector and query to compute a score.
Idea:
- Compute similarity between query and document.

Similarity:
- Define a set of features to use for ranking.
 - each term in the collection is one feature
 - possible features: document size/age, page rank, etc.
- For each document compute a feature vector d_i;
 - e.g., yes/no features; term count; etc.
- For the query compute a feature vector q.
- Measure similarity of the two vectors.
Two vectors are similar if the **angle** between them is small.

![Vector Space Model Diagram](image)

Cosine between d_i and q:

$$\cos(d_i, q) = \frac{\sum_j d_{ij} \cdot q_j}{\sqrt{\sum_j d_{ij}^2 \cdot \sum_j q_j^2}}$$

(j iterates over all features/terms; i is the document in question)

→ “vector space model”
Ignoring the normalization term: \(\text{sim}(d_i, q) = \sum_j d_{ij} q_j \).

→ Multiply corresponding feature values, then sum up.

Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.

\[
\begin{array}{l}
\text{document} \\
9.7 \text{ fish} \quad \leftrightarrow \quad \text{fish} \ 5.2 \\
4.2 \text{ tropical} \quad \leftrightarrow \quad \text{tropical} \ 3.4 \\
22.1 \text{ tropical fish} \quad \leftrightarrow \quad \text{tropical fish} \ 9.9 \\
8.2 \text{ freshwater} \quad \leftrightarrow \quad \text{chichlids} \ 1.2 \\
2.3 \text{ species} \quad \leftrightarrow \quad \text{barbs} \ 0.7 \\
\text{topical features} \quad \leftrightarrow \quad \text{topical features} \\
14 \text{ incoming links} \quad \leftrightarrow \quad \text{incoming links} \ 1.2 \\
3 \text{ days last upd.} \quad \leftrightarrow \quad \text{days last upd.} \ 0.9 \\
\text{quality features} \quad \leftrightarrow \quad \text{quality features} \\
303.01 \text{ document score}
\end{array}
\]

What does this mean for an implementation?
What are good features (and their values)?

Topical Features:
- Each term in the collection (∼ vocabulary) is one feature.

Feature Value:
- A document with multiple occurrences of ‘foo’ is likely more relevant to queries that contain ‘foo’.
 → term frequency tf as a feature value.

$$tf_{doc,foo} = \frac{\text{number of occurrences of ‘foo’ in } doc}{\text{number of words in } doc}$$

→ Normalize to account for different document sizes.
Terms that occur in many documents are less discriminating.

→ inverse document frequency \(idf \):

\[
idf_{\text{foo}} = \log \frac{\text{number of documents in the collection}}{\text{number of documents that contain ‘foo’}}
\]

→ \(idf \) is a property of the term, not the document!

Combine to obtain feature value \(d_{ij} \) (document \(i \), term \(j \)):

\[
d_{ij} = tf_{ij} \cdot idf_j
\]

Do the same thing for query features \(q_j \).
tf/idf weights essentially come from intuition and experiments.

→ No formal basis for the formulas above.

Alternative Formulations:

- **Boolean “frequencies”:**

 \[
 tf_{ij} = \begin{cases}
 1 & \text{when term } j \text{ occurs in document } i \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Use **logarithm** rather than raw count:

 \[
 tf_{ij} = \log(f_{ij}) + 1
 \]

 (add 1 to ensure non-zero weights)

- Give benefit for words that occur in titles, etc.
Quality Features

Some document characteristics do not tell whether the document matches the subject of a query.

→ Yet they may be relevant to the ranking/quality of the document.

Examples:

- Web pages with higher incoming link count may more trustworthy.
- Documents that weren’t modified for a long time may contain outdated information.

Quality features for the query may help to express the user’s intention:

- Is (s)he only interested in the most recent news?
 → Give higher weight to features like ‘days last updated’.
PageRank28 is a quality feature that became popular with the rise of Google.

Motivation: Use link analysis to rate the popularity of a web site.

→ **Incoming links** indicate quality, but are easy to manipulate.
→ Try to weigh each incoming link by the popularity of the originating site.

Idea:

- Assume a **random Internet surfer** Alice.
 → On every page, randomly click some of its outgoing links.
 → Every now and then (with probability λ) jump to a random page instead.
- PageRank of a page p: What is the probability that Alice looks at p when we randomly interrupt her browsing?

28Named after Google founder Larry Page.
Computing PageRank

Example:

Probability that Alice ends up on C:

$$PR(C) = \lambda \cdot \frac{1}{3} + (1 - \lambda) \cdot \left(\frac{PR(A)}{2} + \frac{PR(B)}{1} \right).$$

Generally:

$$PR(u) = \frac{\lambda}{N} + (1 - \lambda) \cdot \sum_{v \in B_u} \frac{PR(v)}{\text{outgoing}_v}.$$
But we don’t know $PR(A)$ and $PR(B)$, yet!

→ **Iterate** the above formula and PageRanks will converge.

→ *E.g.*, initialize with equal PageRanks $1/N$.

- A typical value for λ is 0.15.
- Today, PageRank is just one out of many features used in ranking.
 → Tends to have most impact on popular queries.
Prepare for Queries

Before querying, documents must be analyzed:

1. **Parse** and **tokenize** document.
 - Strip markup (if applicable), identify text to index.
 - Break text into **tokens** (words).
 - Normalize **capitalization**.

2. **Remove stop words**.
 - ‘the,’ ‘a,’ ‘this,’ ‘that,’ etc. generally not useful for search.

3. Normalize words to terms (**stemming**).
 - *E.g.*, ‘fishing,’ ‘fished,’ ‘fisher’ → ‘fish’
 - Stems need not themselves be words (*e.g.*, ‘describe,’
 ‘describing,’ ‘description’ → ‘describ’)

4. Some systems also extract **phrases**.
 - *E.g.*, ‘european union,’ ‘database conference’

Terms are then used to populate an **index**.
Inverted Files

A search engine’s document collection is essentially a mapping

\[\text{document} \rightarrow \text{list of } \text{term} \ . \]

To search the collection, it is much more useful to construct the mapping

\[\text{term} \rightarrow \text{list of } \text{document} \ . \]

E.g.,

<table>
<thead>
<tr>
<th>term</th>
<th>docs</th>
<th>term</th>
<th>docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>(\textit{doc}_1)</td>
<td>both</td>
<td>(\textit{doc}_1)</td>
</tr>
<tr>
<td>aquarium</td>
<td>(\textit{doc}_3)</td>
<td>bright</td>
<td>(\textit{doc}_3)</td>
</tr>
<tr>
<td>are</td>
<td>(\textit{doc}_3, \textit{doc}_4)</td>
<td>coloration</td>
<td>(\textit{doc}_3, \textit{doc}_4)</td>
</tr>
<tr>
<td>around</td>
<td>(\textit{doc}_1)</td>
<td>derives</td>
<td>(\textit{doc}_4)</td>
</tr>
<tr>
<td>as</td>
<td>(\textit{doc}_2)</td>
<td>due</td>
<td>(\textit{doc}_3)</td>
</tr>
</tbody>
</table>
A representation of this type is thus also called inverted file29.

- Conceptually, an inverted file is the same as a database index.
- However, in a search engine, the inverted file forms the heart of the whole system.

 → It makes sense to specialize and fine-tune its implementation.
 → Terminology: For each index term there’s one inverted list. The inverted list is a list of postings.

Characteristics:

- The set of index terms is pretty much fixed (e.g., given by the English dictionary).
- Sizes of inverted lists, by contrast, grow with the number of documents indexed.

 → Their sizes typically follow a Zipfian distribution.

29sometimes also “inverted index”
Inverted files can grow **large**.

→ One posting for every term in every document.
→ Index about as large as entire document collection.

It thus makes sense to **compress** inverted lists.

_predicate: How well will lists of document ids compress?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018
Inverted Files—Compression

This changes if we **sort**, then **delta-encode** inverted lists:

\[1, 5, 9, 18, 23, 24, 30, 44, 45, 48\]

\[\downarrow\]

\[1, 4, 4, 9, 5, 1, 6, 14, 1, 3\]

Can now use compression schemes that favor **small values**.

→ **E.g., null suppression**
 - Suppress **leading null bytes**.
 - Encode number of suppressed nulls with fixed-length prefix.
 - *E.g.,* 18 \(\rightarrow\) 000010010; 427 \(\rightarrow\) 010000000110101011.

→ **E.g., unary codes**
 - Encode \(n\) with sequence of \(n\) 1s, followed by a 0.
 - *E.g.,* 0 \(\rightarrow\) 0; 1 \(\rightarrow\) 10; 2 \(\rightarrow\) 110; 12 \(\rightarrow\) 11111111111110.
Inverted Files—Elias-γ Compression

Elias-γ Codes:

- To encode \(n \), compute

\[
\begin{align*}
n_d &= \lfloor \log_2 n \rfloor \quad \text{“position of leading bit”} \\
n_r &= n - 2^{\lfloor \log_2 n \rfloor} \quad \text{“value encoded by remaining bits”}
\end{align*}
\]

- Then, represent \(n \) using
 - \(n_d \), unary-encoded; followed by
 - \(n_r \), binary-encoded.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n_d)</th>
<th>(n_r)</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>10 0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>10 1</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>7</td>
<td>1110 111</td>
</tr>
<tr>
<td>255</td>
<td>7</td>
<td>127</td>
<td>111111110 1111111</td>
</tr>
</tbody>
</table>
PFOR Compression:

Illustrated here using compressed representation of the digits of π.30

\begin{align*}
\text{header} & \quad 3 & 1 \\
4 & 1 & 5 & \bot & 2 & 6 & 5 & 3 & 5 & \bot \\
\bot & \bot & \bot & 3 & 2 \\
9 & 7 & 9 & 8 & 9
\end{align*}

Decompressed numbers: 31415\textcolor{red}{9}26535897932

30PFOR was developed in the context of the MonetDB/X100 main-memory database project, now commercialized by Actian.
PFOR Decompression

During decompression, we have to consider all the exceptions:

```c
for (i=j=0; i<n; i++)
    if (code[i] != ⊥)
        output[i] = DECODE (code[i]);
    else
        output[i] = exception[--j];
```

For PFOR, \texttt{DECODE} is a simple addition:

```c
#define DECODE(a) ((a) + base\_value)
```

Problem on modern hardware: High branch misprediction cost.
PFOR: Avoiding the Misprediction Cost

Invest some unnecessary work to avoid high misprediction penalty.

Run decompression in **two phases**:

1. **Decompress** all regular fields, but don’t care about exceptions.
2. Work in all the exceptions and **patch** the result.

```c
/* ignore exceptions during decompression */
for (i = 0; i < n; i++)
    output[i] = DECODE(code[i]);

/* patch the result */
foreach exception
    patch corresponding output item;
```
We **don’t** want to use a branch to find all exception targets!

Thus: interpret values in “exception holes” as **linked list**:

→ Can now traverse exception holes and patch in exception values.
The resulting decompression routine is branch-free:

```c
/* ignore exceptions during decompression */
for (i = 0; i < n; i++)
    output[i] = DECODE (code[i]);

/* patch the result (traverse linked list) */
j = 0;
for (cur = first_exception; cur < n; cur = next) {
    next = cur + code[cur] + 1;
    output[cur] = exception[--j];
}
```
With inverted lists available, the evaluation of

\[\text{term}_1 \text{ and term}_2 \]

amounts to computing the **intersection** of the two inverted lists.

Strategy: (assuming inverted lists are **sorted** by document id)

- “Merge” lists \(l_{\text{term}_1} \) and \(l_{\text{term}_2} \) (↗ merge_join (), slide 186).
- Cost: linear scan of \(l_{\text{term}_1} \) plus linear scan of \(l_{\text{term}_2} \).

Problem: Long, inefficient scans

E.g.,

- \(|l_{\text{fish}}| = 300 \text{ M}; \ |l_{\text{freshwater}}| = 1 \text{ M}. \)
- At least 299 M \(l_{\text{fish}} \) entries scanned unnecessarily.

→ **Skip** over those entries?
Skip Pointers

Idea:

- **Skip pointers** point to every kth posting.
- skip pointer: $\langle \text{byte pos}, \text{doc id} \rangle$.

Skip forward to document d:

1. Read skip pointer list as long as $\text{doc id} \leq d$.
2. Follow the pointer and scan posting list from there to find d.
Skip Pointers

Example: $|l_{fish}| = 300$ M; $|l_{freshwater}| = 1$ M; skip distance k.

For complete merge: (cost to read l_{fish})

- Read all 300 M/k skip pointers.
- Perform 1 M posting list scans; average length: $\frac{1}{2}k$.
- Total cost to read l_{fish}: $300,000,000/k + 500,000k$.
Skip Pointers

Improvements:

- Rather than reading skip pointer list sequentially, use
 → binary search,
 → exponential search (also: “galloping search”), or
 → interpolation search.

Why not use these search methods directly on the inverted list?
Query Execution (with Ranking)

Idea:

1. **Compute score** for each document.
2. **Sort** by score.
3. **Return** top n result documents.

Only features j where $q_j \neq 0$ will contribute to $\sum_j d_{ij} q_j$.

→ Score only documents that appear in at least one inverted list for the index terms in q.
Term-at-a-Time Retrieval

Process inverted lists one after another:

1. \(R \leftarrow \text{PriorityQueue}\left(n\right) \);
2. \(A \leftarrow \text{HashTable}\left()\) ;
3. \textbf{foreach} term \(j \) \textbf{in} \(q \) \textbf{do}
 4. \quad \textbf{foreach} document \(i \) \textbf{in} inverted list for \(j \) \textbf{do}
 5. \quad \quad \text{score} \leftarrow A.\text{get}\left(i\right) ;
 6. \quad \quad \textbf{if} \ not \ found \textbf{then}
 7. \quad \quad \quad A.\text{put}\left(i, d_{ij}q_j\right) ;
 8. \quad \quad \textbf{else}
 9. \quad \quad \quad A.\text{put}\left(i, \text{score} + d_{ij}q_j\right) ;
10. \textbf{foreach} \(\langle i, \text{score} \rangle \) \textbf{in} \(A \) \textbf{do}
11. \quad R.\text{add}\left(i, \text{score} \right) ;
12. \textbf{return} \(R \) ;
Document-at-a-Time Retrieval

1. $R \leftarrow \text{PriorityQueue}(n)$;
2. \textbf{foreach} term j in q \textbf{do}
3. \hspace{1em} L.add (inverted list for j);
4. \textbf{while} L is not empty \textbf{do}
5. \hspace{2em} /* Find next document i in any inverted list */
6. \hspace{3em} $i \leftarrow \text{smallest } l_j.dociD \text{ in } L$;
7. \hspace{2em} /* Score document i */
8. \hspace{3em} $score \leftarrow 0$;
9. \hspace{2em} \textbf{foreach} $l_j \in L$ \textbf{do}
10. \hspace{3em} \hspace{1em} \textbf{if} $l_j.dociD = i$ \textbf{then}
11. \hspace{4em} \hspace{1em} $score \leftarrow score + d_{ij}q_j$;
12. \hspace{4em} \hspace{1em} l_j.advance () ;
13. \hspace{4em} \hspace{1em} \textbf{if} eof (l_j) \textbf{then}
14. \hspace{4em} \hspace{2em} L.remove (l_j) ;
15. \hspace{3em} R.add (i, $score$) ;
16. \hspace{2em} \textbf{return} R ;
Restriction:
- Return only documents that contain all of the query terms.

Then:
- Document-at-a-time \rightarrow intersection/merging.
 \rightarrow Use skip lists to navigate through inverted lists quickly.
- In k-way merges, it may help to always consult shortest inverted list first.

This is a heuristic and might miss some top-n results!
Threshold Methods: MaxScore

Top-n formulation returns only documents with $score \geq \tau$.

→ But we know τ only after we evaluated the query!

However:

■ Once we added n elements to the priority queue R, we can conclude that

$$\tau \geq \tau' \overset{\text{def}}{=} \text{minimum score in } R.$$

i.e., τ' is a conservative estimate for τ.

■ For each inverted list l_j, maintain maximum score μ_j.

→ Once $\tau' > \mu_j$, documents that occur only in l_j can be skipped.

MaxScore achieves similar effect as conjunctive processing, but guarantees a correct result.
We assumed that posting lists are *sorted by document id*.
→ Enables delta encoding.
→ Eases intersection/merging.

Document ids, however, were so far assigned “randomly”.

Idea:
- Assign document ids/order inverted lists, so list processing can be **terminated early**.
- *E.g.*, order by **decreasing value of quality features**.
 → μ_j decreases within l_j.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018
Inverted Lists with More Details

So far:
- Inverted lists contain document ids (pointers to documents).
- Must read (maybe even parse, tokenize, stem) documents to get q_{ij}.

Instead:
- Add information to inverted lists to **avoid document access**.
- Example: Add
 - number of documents that contain the term ($\sim idf_j$)
 - number of occurrences of the term in the document ($\sim tf_{ij}$)

<table>
<thead>
<tr>
<th>term</th>
<th>#</th>
<th>docs</th>
<th>term</th>
<th>#</th>
<th>docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>\langle doc_1:1 \rangle</td>
<td>both</td>
<td>1</td>
<td>\langle doc_1:1 \rangle</td>
</tr>
<tr>
<td>aquarium</td>
<td>1</td>
<td>\langle doc_3:1 \rangle</td>
<td>bright</td>
<td>1</td>
<td>\langle doc_3:1 \rangle</td>
</tr>
<tr>
<td>are</td>
<td>2</td>
<td>\langle doc_3:1, doc_4:1 \rangle</td>
<td>coloration</td>
<td>2</td>
<td>\langle doc_3:1, doc_4:1 \rangle</td>
</tr>
<tr>
<td>around</td>
<td>1</td>
<td>\langle doc_1:1 \rangle</td>
<td>derives</td>
<td>1</td>
<td>\langle doc_4:1 \rangle</td>
</tr>
<tr>
<td>as</td>
<td>1</td>
<td>\langle doc_2:1 \rangle</td>
<td>due</td>
<td>1</td>
<td>\langle doc_3:1 \rangle</td>
</tr>
</tbody>
</table>
Instead, some systems store **word positions**:

<table>
<thead>
<tr>
<th>term</th>
<th>#</th>
<th>docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>⟨doc₁:(15)⟩</td>
</tr>
<tr>
<td>aquarium</td>
<td>1</td>
<td>⟨doc₃:(5)⟩</td>
</tr>
<tr>
<td>are</td>
<td>2</td>
<td>⟨doc₃:(3), doc₄:(14)⟩</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>fish</td>
<td>4</td>
<td>⟨doc₁:(2, 4), doc₂:(7, 18, 23), doc₃:(2, 6), doc₄:(3, 13)⟩</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

→ Find phrases ("tropical fish") or rank documents higher where search terms occur nearby.
Inverted Lists with More Details

Store $tf_{ij}idf_i$ directly in inverted list?

✔ **Speeds up** computation of document scores.
 → Could incorporate even more expensive offline computations.

✘ **Very inflexible.**
 → What if ranking function changes? Need to re-compute index!

✘ Scoring values might **compress** poorly.

More Tricks:

- Store **extent lists** as inverted lists:
 → *E.g.*, inverted list for ‘title’, storing **document regions** that correspond to the document’s title.
 → Fits well with start/end tags in markup languages.
Evaluating a Search Engine

A good search engine returns
- many relevant documents, but
- few non-relevant documents.

“Relevant”?
- What matters is relevance to the user.
- To evaluate a search engine
 → Take a test collection of documents and queries.
 → Obtain relevance judgements from experts (users).
 → Compare search engine output to expert judgements.
Recall and Precision

Recall:
- How many of the relevant documents were retrieved?

\[
Recall = \frac{|\text{retrieved documents that are relevant}|}{|\text{all relevant documents}|}
\]

Precision:
- How many of the retrieved documents are relevant?

\[
Precision = \frac{|\text{retrieved documents that are relevant}|}{|\text{retrieved documents}|}
\]

Since we return top-\(n\) documents according to rank, both values will vary with \(n\).
Recall and Precision

Precision and recall for an example document/query:

- Relevant Documents

- Result Document

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018
Recall and Precision

- Recall is **monotonically increasing**.
- Precision tends to **decrease** with \(n \).

→ Draw “recall-precision graph”