
Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2018

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 1

Part V

Query Processing

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 151

SELECT C.CUST ID, C.NAME, SUM (O.TOTAL) AS REVENUE

FROM CUSTOMERS AS C, ORDERS AS O

WHERE C.ZIPCODE BETWEEN 8000 AND 8999

AND C.CUST ID = O.CUST ID

GROUP BY C.CUST ID

ORDER BY C.CUST ID, C.NAME

aggregation

selection

join

sorting

grouping

A DBMS needs to do a number of tasks

with limited memory resources,

over large amounts of data,

yet as fast as possible.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 152

Query Processing

data files, indices, . . .

Disk Space Manager

Buffer Manager

Files and Access Methods

Optimizer

Executor Parser

Operator Evaluator

Lock

Manager

Transaction

Manager Recovery

Manager

DBMS

Database

SQL Commands

Web Forms Applications SQL Interface

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 153

Sorting

Sorting is a core database operation with numerous applications:

A SQL query may explicitly request sorted output:

SELECT A, B, C FROM R ORDER BY A

Bulk-loading a B+-tree presupposes sorted data.

Duplicate elimination is particularly easy over sorted input:

SELECT DISTINCT A, B, C FROM R

Some database operators rely on their input files being already

sorted (some of which meet later in this course).

How can we sort a file that exceeds the available main memory size

by far (let alone the available buffer manager space)?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 154

Two-Way Merge Sort

We start with two-way merge sort, which can sort files of arbitrary size

with only three pages of buffer space.

Two-way merge sort sorts a file with N = 2k pages in multiple passes,

each of them producing a certain number of sorted sub-files called runs.

Pass 0 sorts each of the 2k input pages individually and in main

memory, resulting in 2k sorted runs.

Subsequent passes merge pairs of runs into larger runs. Pass n

produces 2k−n runs.

Pass k leaves only one run left, the sorted overall result.

During each pass, we read every page in the file. Hence, (k + 1) ·N page

reads and (k + 1) · N page writes are required to sort the file.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 155

Pass 0 (Input: N = 2k unsorted pages; Output: 2k sorted runs)

1. Read N pages, one page at a time

2. Sort records in main memory.

3. Write sorted pages to disk (each page results in a run).

This pass requires one page of buffer space.

Pass 1 (Input: N = 2k sorted runs; Output: 2k−1 sorted runs)

1. Open two runs r1 and r2 from Pass 0 for reading.

2. Merge records from r1 and r2, reading input page-by-page.

3. Write new two-page run to disk (page-by-page).

This pass requires three pages of buffer space.
...

Pass n (Input: 2k−n+1 sorted runs; Output: 2k−n sorted runs)

1. Open two runs r1 and r2 from Pass n − 1 for reading.

2. Merge records from r1 and r2, reading input page-by-page.

3. Write new 2n-page run to disk (page-by-page).

This pass requires three pages of buffer space.
...

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 156

Illustration / Example

6 5 4 3 4 7 8 9 5 2 1 3 8

5 6 3 4 4 7 8 9 2 5 1 3 8

3 4

5 6

4 7

8 9

1 2

3 5

8

3 4

4 5

6 7

8 9

1 2

3 5

8

1 2 3 3 4 4 5 5 6 7 8 8 9

Pass 0

Pass 1

Pass 2

Pass 3

input file

1-page runs

2-page runs

4-page runs

7-page run

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 157

Two-Way Merge Sort: I/O Behavior

To sort a file of N pages, we need to read and write N pages during

each pass

→ 2 · N I/O operations per pass.

The number of passes is 1︸︷︷︸
Pass 0

+ dlog2Ne︸ ︷︷ ︸
Passes 1 . . . k

.

Total number of I/O operations:

2 · N · (1 + dlog2Ne) .

� How many I/Os does it take to sort an 8 GB file?

Assuming a page size of 8 KB, the file spans ≈ 1 mio pages. After the

initial page-wise pass, we need 20 passes to merge:

2 · 1 mio · (1 + dlog2 1 mioe) = 2 · 1 mio · (1 + 20) = 42 mio I/Os

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 158

External Merge Sort

So far we “voluntarily” used only three pages of buffer space.

How could we make effective use of a significantly larger buffer pool

(of, say, B memory frames)?

There are basically two knobs we can turn:

Reduce the number of initial runs by using the full buffer space

during the in-memory sort.

Reduce the number of passes by merging more than 2 runs at a

time.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 159

Reducing the Number of Initial Runs

With B frames available in the buffer pool, we can read B pages at a

time during Pass 0 and sort them in memory (↗ slide 156):

Pass 0 (Input: N unsorted pages; Output:
::::::::::::::::
dN/Be sorted runs)

1. Read N pages,
::::::::::::::::::
B pages at a time

2. Sort records in main memory.

3. Write sorted pages to disk (resulting in
::::::::::
dN/Be runs).

This pass uses
::::::::
B pages of buffer space.

The number of initial runs determines the number of passes we need

to make (↗ slide 158):

→ Total number of I/O operations: 2 · N · (1 + dlog2 dN/Bee) .

� How many I/Os does it now take to sort an 8 GB file?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 160

Reducing the Number of Passes

With B frames available in the buffer pool, we can merge B − 1 pages at

a time (leaving one frame as a write buffer).

Pass n (Input: dN/Be
(B−1)n−1 sorted runs; Output: dN/Be

(B−1)n sorted runs)

1. Open
::::::::::::::::::::
B − 1 runs r1 . . . rB−1 from Pass n − 1 for reading.

2. Merge records from
:::::::::
r1 . . . rB−1, reading input page-by-page.

3. Write new
::::::::::::::::
B · (B − 1)n-page run to disk (page-by-page).

This pass requires B pages of buffer space.

With B pages of buffer space, we can do a (B − 1)-way merge.

→ Total number of I/O operations: 2 · N ·
(

1 +
⌈
logB−1 dN/Be

⌉)
.

� How many I/Os does it now take to sort an 8 GB file?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 161

External Sorting: I/O Behavior

Sorting N pages with B buffer frames requires

2 · N ·
(

1 +
⌈
logB−1 dN/Be

⌉)
I/O operations.

� What is the access pattern of these I/Os?

In Pass 0, we read chunks of size B sequentially.

Everything else is random access.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 162

Blocked I/O

We could improve the I/O pattern by reading blocks of, say, b pages at

once during the merge phases.

Allocate b pages for each input (instead of just one).

Reduces per-page I/O cost by a factor of ≈ b.

The price we pay is a decreased fan-in (resulting in an increased

number of passes and more I/O operations).

In practice, main memory sizes are typically large enough to sort

files with just one merge pass, even with blocked I/O.

� How long does it take to sort 8 GB (counting only I/O cost)?

1000 buffer pages, 8 KB each; 10 ms total disk latency

Without blocked I/O: ≈ 4 · 106 disk seeks (11.6 h) + transfer of

≈ 6 · 106 disk pages (17 min)

With blocked I/O (32 page blocks): ≈ 6 · 32, 768 disk seeks

(33 min) + transfer of ≈ 8 · 106 disk pages (22 min)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 163

Selection Trees

Choosing the next record from B − 1 (or B/b− 1) input runs can be quite

CPU intensive (B − 2 comparisons).

Use a selection tree to reduce this cost.

E.g., “tree of losers” (↗ D. Knuth, TAoCP, vol. 3):

23

95

79

91

985

985

...

23

...

670

91

...

670

...

605

850

605

...

850

...

873

873

...

79

...

142

132

190

190

...

132

...

412

95

...

412

...

278

390

142

...

390

...

901

278

...

901

...

This cuts the number of comparisons to log2 (B − 1).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 164

External Sorting—Discussion

External sorting follows the principle of divide and conquer.

This leads to a number of independent tasks.

These tasks can be executed in parallel (think of

multi-processor machines or distributed databases).

External sorting makes sorting very efficient. In most practical

cases, two passes suffice to sort even huge files.

There are a number of tweaks to tune sorting even further:

Replacement sort: Re-load new pages while writing out initial

runs in Pass 0, thus increasing the initial run length.

Double buffering: Interleave page loading and input processing

in order to hide disk latency.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 165

Query Plans

RETURN

|

NLJOIN

/---/ \---\

FETCH IXSCAN

/ \ / \

RIDSCN Table: Index: Table:

| G_PRE_SIZE G_PRE_SIZE G_PRE_SIZE

SORT DOC PARENT_IDX DOC

|

IXSCAN

/ \

Index: Table:

G_PRE_SIZE G_PRE_SIZE

PROP_IDX DOC

Actual DB2 execution plan.

External sorting is one

instance of a (physical)

database operator.

Operators can be assembled

into a query execution plan.

Each plan operator performs

one sub-task of a given

query. Together, the

operators of a plan evaluate

the full query.

We’ll have a deeper look into some of these operators next.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 166

B+-Trees for Simple Range Queries

Consider (again, see slide 60) the following query:

SELECT *

FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8800 AND 8999

Possible execution strategy (using a B+-tree index):

Locate first record where ZIPCODE ≥ 8800.

Then scan B+-tree leaves until ZIPCODE ≤ 8999.

If index is not clustered, fetch corresponding tuple for each entry.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 167

B+-Trees for Simple Range Queries

� Execution cost of this evaluation strategy?

selectivity

cost

What would be the cost of answering the query without an index?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 168

Execution Cost For Index Scans

Non-clustered index: every record fetch causes a new I/O request.

Example:

CUSTOMERS table with 1,000,000 tuples

50 records per data page (i.e., 20,000 pages for CUSTOMERS)

filter selectivity of 5 %

Thus:

→ 50,000 tuples match filter predicate

→ 50,000 I/O requests to fetch tuples (2.5 times the entire table!)

(Plus 5 % of all index leaves, which should be few hundred pages.)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 169

Execution Cost For Index Scans

The situation is even worse:

All tuple fetches are “random I/O”.

→ 50,000× 15 ms = 750 seconds!12

To compare:

A full table scan would require only 20,000 I/Os, which can be

read using sequential I/O.

→ 15 ms + 20,000× 8 kB
100 MB/s

= 1.6 seconds

→ A full table scan can be substantially faster than an index scan with

tuple fetch.

� Predictable performance typically more important

than actual/average/. . . runtime.

12Good server drives may have access times � 15 ms.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 170

Better Evaluation Strategies

The “randomness” of tuple fetches can be

avoided as follows:

1 Scan index to retrieve all matching RIDs.

2 Sort those RIDs to match the physical

order on disk.

3 Fetch tuples from disk in disk order.

Consequences:

Read each data page at most once, and

only read necessary pages.

DB2 chooses this strategy for low to medium

selectivities (see plan on the right).

RETURN(1) 15,517.63

FETCH(6) 15,517.63

RIDSCN(8) 229.21

SORT(10) 229.21

IXSCAN(12) 203.12

STRTAB_A

TEUBNER.STRTAB

TEUBNER.STRTAB

� What does this mean with regard to “cost vs. selectivity”?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 171

Prefetching

A sorted RID list allows aggressive prefetching.

List Prefetch Preparation
| Access Table Name = TEUBNER.STRTAB ID = 2,5
| | #Columns = 4
| | Skip Inserted Rows
| | Avoid Locking Committed Data
| | Currently Committed for Cursor Stability
| | RID List Fetch Scan
| | Fetch Using Prefetched List
| | | Prefetch: 14706 Pages
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Sargable Predicate(s)
| | | #Predicates = 2
| | | Return Data to Application
| | | | #Columns = 4
Return Data Completion

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 172

Index Re-Scans

If data records are kept in a clustered index, that index will be

re-scanned very frequently.

→ This is a frequent pattern that also occurs for other reasons.

If keys to be searched are sorted, such repeated index scans become

particularly efficient.

Keep full root-to-leaf path of index in memory.

(That’s only a few pages, since B+-trees are not deep.)

When re-scanning, start from deepest level possible.

→ Nagivate back up, as long as new search key is larger than

maximum key of current node.

→ Can use fence keys to decide.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 173

B+-Trees for Simple Range Queries

Some queries don’t actually need the tuple fetch:

SELECT ZIPCODE

FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8800 AND 8999

The index already contains everything needed to answer that query.

This allows for index-only retrieval of ZIPCODE values.

More queries are eligible to index-only retrieval than one might

intuitively think.

aggregates, existence queries, joins, etc.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 174

More Index-Only Queries

To permit more index-only processing for more queries, add columns to

the index, even when they are not part of the key.

I IBM DB2:

CREATE INDEX IndexName

ON TableName (col1, col2, . . . , coln)

INCLUDE (col1, col2, . . . , colm)

(The INCLUDE clause is allowed in DB2 only if the index is declared as UNIQUE.)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 175

The Join Operator 1

The join operator 1p is actually a short-hand for a combination of cross

product × and selection σp.

R S

1p ⇔

R S

×

σp

One way to implement 1p is to follow this equivalence:

1 Enumerate all records in the cross product of R and S .

2 Then pick those that satisfy p.

More advanced algorithms try to avoid the obvious inefficiency in Step 1

(the size of the intermediate result is |R| · |S |).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 176

Nested Loops Join

The nested loops join is the straightforward implementation of the σ–×
combination:

1 Function: nljoin (R, S, p)

2 foreach record r ∈ R do

3 foreach record s ∈ S do

4 if 〈r , s〉 satisfies p then

5 append 〈r , s〉 to result

Let NR and NS the number of pages in R and S ; let pR and pS be the

number of records per page in R and S .

The total number of disk reads is then

NR + pR · NR︸ ︷︷ ︸
tuples in R

·NS .

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 177

Nested Loops Join: I/O Behavior

The good news about nljoin () is that it needs only three pages of

buffer space (two to read R and S , one to write the result).

The bad news is its enormous I/O cost:

Assuming pR = pS = 100, NR = 1000, NS = 500, we need to read

1000 +
(

5 · 107
)

disk pages.

With an access time of 10 ms for each page, this join would take

140 hours!

Switching the role of R and S to make S (the smaller one) the

outer relation does not bring any significant advantage.

Note that reading data page-by-page (even tuple-by-tuple) means that every I/O

suffers the disk latency penalty, even though we process both relations in sequential

order. An exception is the situation when S fully fits into the buffer pool �.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 178

Block Nested Loops Join

Again we can save random access cost by reading R and S in blocks of,

say, bR and bS pages.

1 Function: block nljoin (R, S, p)

2 foreach bR-sized block in R do

3 foreach bS -sized block in S do

4 find matches in current R- and S-blocks and

append them to the result ;

R is still read once, but now with only dNR/bRe disk seeks.

S is scanned only dNR/bRe times now, and we need to perform

dNR/bRe · dNS/bSe disk seeks to do this.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 179

Choosing bR and bS

E.g., buffer pool with B = 100 frames, NR = 1000, NS = 500:

0 0

1000 1000

2000 2000

3000 3000

4000 4000

5000 5000

6000 6000

7000 7000

10 20 30 40 50 60 70 80 90

102030405060708090
block size used for reading S (bS)

block size used for reading R (bR)

d
is

k
se

ek
s

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 180

In-Memory Join Performance

Line 4 in block nljoin (R, S, p) implies an in-memory join

between the R- and S-blocks currently in memory.

Building a hash table over the R-block can speed up this join

considerably.

1 Function: block nljoin’ (R, S, p)

2 foreach bR-sized block in R do

3 build an in-memory hash table H for the current R-block ;

4 foreach bS -sized block in S do

5 foreach record s in current S-block do

6 probe H and append matching 〈r , s〉 tuples to

result ;

Note that this optimization only helps equi-joins.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 181

Index Nested Loops Join

The index nested loops join takes advantage of an index on the inner

relation (swap outer ↔ inner if necessary):

1 Function: index nljoin (R, S, p)

2 foreach record r ∈ R do

3 probe index using r and append all matching tuples

to result ;

The index must be compatible with the join condition p.

Hash indices, e.g., only support equality predicates.

Remember the discussion about composite keys in B+-trees (↗
slide 107).

Such predicates are also called sargable (SARG: search argument

↗ Selinger et al., SIGMOD 1979)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 182

I/O Behavior

For each record in R, we use the index to find matching S-tuples.

While searching for matching S-tuples, we incur the following I/O costs

for each tuple in R:

1 Access the index to find its first matching entry: Nidx I/Os.

2 Scan the index to retrieve all n matching rids. The I/O cost for this

is typically negligible.

3 Fetch the n matching S-tuples from their data pages.

For an unclustered index, this requires n I/Os.

For a clustered index, this only requires dn/pSe I/Os.

Note that (due to 2 and 3), the cost of an index nested loops join

becomes dependent on the size of the join result.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 183

Index Access Cost

If the index is a B+-tree index:

A single index access requires the inspection of h pages.13

If we repeatedly probe the index, however, most of these are

cached by the buffer manager.

The effective value for Nidx is around 1–3 I/Os.

If the index is a hash index:

Caching doesn’t help us here (no locality in accesses to hash table).

A typical value for Nidx is 1.2 I/Os (due to overflow pages).

Overall, the use of an index (over, e.g., a block nested loops join) pays

off if the join picks out only few tuples from a big table.

13h: B+-tree height
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 184

Sort-Merge Join

Join computation becomes particularly simple if both inputs are sorted

with respect to the join attribute(s).

The merge join essentially merges both input tables, much like we

did for sorting.

Contrast to sorting, however, we need to be careful whenever a

tuple has multiple matches in the other relation:

A B
"foo" 1
"foo" 2
"bar" 2
"baz" 2
"baf" 4

1
B=C

C D
1 false
2 true
2 false
3 true

Merge join is typically used for equi-joins only.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 185

1 Function: merge join (R, S,α = β) // α, β: join cols in R,

S

2 r ← position of first tuple in R ; // r , s, s ′: cursors over R, S , S

3 s ← position of first tuple in S ;

4 while r 6= eof and s 6= eof do // eof: end of file marker

5 while r .α < s.β do

6 advance r ;

7 while r .α > s.β do

8 advance s ;

9 s ′ ← s ; // Remember current position in S

10 while r .α = s ′.β do // All R-tuples with same α value

11 s ← s ′ ; // Rewind s to s ′

12 while r .α = s.β do // All S-tuples with same β value

13 append 〈r , s〉 to result ;

14 advance s ;

15 advance r ;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 186

I/O Behavior

If both inputs are already sorted and there are no exceptionally long

sequences of identical key values, the I/O cost of a merge join is

NR + NS (which is optimal).

By using blocked I/O, these I/O operations can be done almost

entirely as sequential reads.

Sometimes, it pays off to explicitly sort a (unsorted) relation first,

then apply merge join. This is particularly the case if a sorted

output is beneficial later in the execution plan.

The final sort pass can also be combined with merge join, avoiding

one round-trip to disk and back.

� What is the worst-case behavior of merge join?

If both join attributes are constants and carry the same value (i.e., the

result is the Cartesian product), merge join degenerates into a nested

loops join.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 187

Hash Join

Sorting effectively brought related tuples into spacial proximity,

which we exploited in the merge join algorithm.

We can achieve a similar effect with hashing, too.

Partition R and S into partitions R1, . . . ,Rn and S1, . . . ,Sn using

the same hash function (applied to the join attributes).

Relation R

Relation S

h

h

Partition 1 (R1 and S1)

Partition 2 (R2 and S2)

Partition 3 (R3 and S3)

...

Partition n (Rn and Sn)

Observe that Ri 1 Sj = ∅ for all i 6= j .

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 188

Hash Join

By partitioning the data, we reduced the problem of joining to

smaller sub-relations Ri and Si .

Matching tuples are guaranteed to end up together in the same

partition.

We only need to compute Ri 1 Si (for all i).

By choosing n properly (i.e., the hash function h), partitions become

small enough to implement the Ri 1 Si as in-memory joins.

The in-memory join is typically accelerated using a hash table, too.

We already did this for the block nested loops join (↗ slide 181).

� Use a different hash function h′ for the in-memory join.

�Why?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 189

Hash Join Algorithm

1 Function: hash join (R,S,α = β)

2 foreach record r ∈ R do

3 append r to partition Rh(r .α)

4 foreach record s ∈ S do

5 append s to partition Sh(s.β)

6 foreach partition i ∈ 1, . . . , n do

7 build hash table H for Ri , using hash function h′;

8 foreach block in Si do

9 foreach record s in current Si -block do

10 probe H and append matching tuples to result ;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 190

Hash Join—Buffer Requirements

We’ve assumed that we can create the necessary n partitions in one

pass (note that we want NRi < (B − 1)).

This works out if R consists of at most ≈ (B − 1)2 pages.

� Why (B − 1)2? Why ≈?

We can write out at most B − 1 runs in one pass; each of them

should be at most B − 1 pages in size.

Hashing doesn’t guarantee us an even distribution. Since the actual

size of each run varies, R must actually be smaller than (B − 1)2.

Larger input tables require multiple passes for partitioning.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 191

Hash Join vs. Sort-Merge Join

Provided sufficient buffer space (B &
√

N), hash join and sort-merge join

both require 3 (NR + NS) I/Os.14

For sort-merge join, both relations need to be smaller than

B(B − 1) (assuming we need to sort before the join), i.e.,

NR < B(B − 1) and NS < B(B − 1) .

In case of hash join, only the inner relation needs to be partitioned

into (B − 1)-sized chunks, i.e.,

min(NR ,NS) . (B − 1)2 .

The cost for hash join could considerably increase if partitions aren’t

uniformly sized.

14Read/write both relations to partition/sort; read both relations to join.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 192

Implementing Grouping and Duplicate Elimination

Challenge is to find identical tuples in a file.

This task has obvious similarities to a self-join based on all of the

file’s columns.

→ Could use a hash join-like algorithm or sorting to implement

duplicate elimination or grouping.

See exercises for further details.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 193

Other Database Operators

Projection π

Text book-style processing of π implies

(a) discarding unwanted fields and

(b) eliminating duplicates.

Implementing (a) amounts to a straightforward file scan. We have

mentioned implementations for (b) a moment ago.

Typically, systems try to avoid (b) whenever possible. In SQL,

duplicate elimination has to be asked for explicitly.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 194

Orchestrating Operator Evaluation

So far we have assumed that all database operators consume and

produce files (i.e., on-disk items):

· · ·

· · ·
1

file1

π

file2

σ

file3

· · ·

filen

π

Obviously, this causes a lot of I/O.

In addition, we suffer from long response times:

An operator cannot start computing its result before all its

input files are fully generated (“materialized”).

Effectively, all operators are executed in sequence.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 195

Pipelined Evaluation

Alternatively, each operator could pass its result directly on to the

next operator (without persisting it to disk first).

Don’t wait until entire file is created, but propagate output

immediately.

Start computing results as early as possible, i.e., as soon as enough

input data is available to start producing output.

This idea is referred to as pipelining.

The granularity in which data is passed may influence performance:

Smaller chunks reduce the response time of the system.

Larger chunks may improve the effectiveness of (instruction)

caches.

Actual systems typically operate tuple at a time.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 196

Unix: Pipelines of Processes

Unix uses a similar mechanism to communicate between processes

(“operators”):

find . -size +1000k | xargs file \

| grep -i XML | cut -d: -f1

Execution of this pipe is driven by the rightmost operand:

To produce a line of output, cut only needs to see the next line of

its input: grep is requested to produce this input.

To produce a line of output, grep needs to request as many input

lines from the xargs process until it receives a line containing the

string "XML".

. . .

Each line produced by the find process is passed through the pipe

until it reaches the cut process and eventually is echoed to the

terminal.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 197

The Volcano Iterator Model

The calling interface used in database execution runtimes is very

similar to the one used in Unix process pipelines.

In databases, this interface is referred to as open-next-close

interface or Volcano iterator model.

Each operator implements the functions

open () Initialize the operator’s internal states.

next () Produce and return the next result tuple.

close () Clean up all allocated resources (typically after all

tuples have been processed).

All state is kept inside each operator.

↗ Goetz Graefe. Volcano—An Extensibel and Parallel Query Evaluation

System. Trans. Knowl. Data Eng. vol. 6, no. 1, February 1994.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 198

Example: Selection (σ)

Input operator R, predicate p.

1 Function: open ()

2 R.open () ;

1 Function: close ()

2 R.close () ;

1 Function: next ()

2 while ((r ← R.next ()) 6= eof) do

3 if p(r) then

4 return r ;

5 return eof ;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 199

� How would you implement a Volcano-style nested loops join?

1 Function: open ()

2 R.open () ;

3 S .open () ;

4 r ← R.next () ;

1 Function: close ()

2 R.close () ;

3 S .close () ;

1 Function: next ()

2 while (r 6= eof) do

3 while ((s ← S .next ()) 6= eof) do

4 if p(r , s) then

5 return 〈r , s〉 ;

6 S .close () ;

7 S .open () ;

8 r ← R.next () ;

9 return eof ;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 200

Blocking Operators

Pipelining reduces memory requirements and response time since

each chunk of input is propagated to the output immediately.

Some operators cannot be implemented in such a way.

� Which ones?

(external) sorting (this is also true for Unix sort)

hash join

grouping and duplicate elimination over unsorted input

Such operators are said to be blocking.

Blocking operators consume their entire input before they can

produce any output.

The data is typically buffered (“materialized”) on disk.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 201

Techniques We Saw In This Chapter

Divide and Conquer

Many database algorithms derive their power from chopping a large

input problem into smaller, manageable pieces, e.g.,

run generation and merging in external sorting,

partitioning according to a hash function (hash join).

Blocked I/O

Reading and writing chunks of pages at a time can significantly

reduce the degree of random disk access.

→ This “trick” was applicable to most operators we saw.

Pipelined Processing

The Volcano iterator model can save memory and reduce response

time by avoiding the full materialization of intermediate results if

possible.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 202

	Query Processing
	Sorting
	Two-Way Merge Sort
	External Merge Sort

	Query Plans and Operators
	Implementing Selection
	The Join Operator
	Nested Loops Join
	Block Nested Loops Join
	Index Nested Loops Join
	Sort-Merge Join
	Hash Join
	Grouping and Duplicate Elimination
	Other Database Operators

	Pipelined Operator Execution
	Unix: Pipelines of Processes
	The Volcano Iterator Model
	Blocking Operators

	Techniques We Saw In This Chapter

