Part VI

Query Optimization
We already saw that there may be more than one way to answer a given query.

- Which one of the join operators should we pick? With which parameters (block size, buffer allocation, ...)?

- The task of finding the best execution plan is, in fact, the holy grail of any database implementation.
Plan Generation Process

- **Parser:** syntactical/semantical analysis
- **Rewriting:** optimizations independent of the current database state (table sizes, availability of indexes, etc.)
- **Optimizer:** optimizations that rely on a cost model and information about the current database state
- The resulting **plan** is then evaluated by the system’s **execution engine**.
Impact on Performance

Finding the right plan can dramatically impact performance.

```sql
SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM LINEITEM L, ORDERS O, CUSTOMER C
WHERE L.L_ORDERKEY = O.O_ORDERKEY
AND O.O_CUSTKEY = C.C_CUSTKEY
AND C.C_NAME = 'IBM Corp.'
```

In terms of execution times, these differences can easily mean “seconds versus days.”
The SQL Parser

- Besides some analyses regarding the syntactical and semantical correctness of the input query, the parser creates an internal representation of the input query.

- This representation still resembles the original query:
 - Each SELECT-FROM-WHERE clause is translated into a query block.

 \[
 \begin{align*}
 \text{SELECT} & \quad \text{proj-list} \\
 \text{FROM} & \quad R_1, R_2, \ldots, R_n \\
 \text{WHERE} & \quad \text{predicate-list} \\
 \text{GROUP BY} & \quad \text{groupby-list} \\
 \text{HAVING} & \quad \text{having-list}
 \end{align*}
 \]

 \[
 \pi_{\text{proj-list}} \sigma_{\text{having-list}} \text{grpby}_{\text{groupby-list}} \sigma_{\text{predicate-list}} \times R_1 R_2 \cdots R_n
 \]

- Each \(R_i\) can be a base relation or another query block.
Finding the “Best” Execution Plan

The parser output is fed into a rewrite engine which, again, yields a tree of query blocks.

It is then the optimizer’s task to come up with the optimal execution plan for the given query.

Essentially, the optimizer

1. enumerates all possible execution plans,
2. determines the quality (cost) of each plan, then
3. chooses the best one as the final execution plan.

Before we can do so, we need to answer the question

- What is a “good” execution plan at all?
Cost Metrics

Database systems judge the quality of an execution plan based on a number of cost factors, e.g.,
- the number of disk I/Os required to evaluate the plan,
- the plan’s CPU cost,
- the overall response time observable by the user as well as the total execution time.

A cost-based optimizer tries to anticipate these costs and find the cheapest plan before actually running it.
- All of the above factors depend on one critical piece of information: the size of (intermediate) query results.
- Database systems, therefore, spend considerable effort into accurate result size estimates.
Consider a query block corresponding to a simple SFW query Q.

We can estimate the result size of Q based on

- the size of the input tables, $|R_1|, \ldots, |R_n|$, and
- the **selectivity** $sel(p)$ of the predicate $predicate-list$:

\[
|Q| \approx |R_1| \cdot |R_2| \cdots |R_n| \cdot sel(predicate-list).
\]
Table Cardinalities

If not coming from another query block, the size $|R|$ of an input table R is available in the DBMS’s system catalogs.
E.g., IBM DB2:

db2 => SELECT TABNAME, CARD, NPAGES
 FROM SYSCAT.TABLES
 WHERE TABSCHEMA = 'TPCH';

<table>
<thead>
<tr>
<th>TABNAME</th>
<th>CARD</th>
<th>NPAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORDERS</td>
<td>1500000</td>
<td>44331</td>
</tr>
<tr>
<td>CUSTOMER</td>
<td>150000</td>
<td>6747</td>
</tr>
<tr>
<td>NATION</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>REGION</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>PART</td>
<td>200000</td>
<td>7578</td>
</tr>
<tr>
<td>SUPPLIER</td>
<td>10000</td>
<td>406</td>
</tr>
<tr>
<td>PARTSUPP</td>
<td>800000</td>
<td>31679</td>
</tr>
<tr>
<td>LINEITEM</td>
<td>6001215</td>
<td>207888</td>
</tr>
</tbody>
</table>

8 record(s) selected.
Estimating Selectivities

To estimate the selectivity of a predicate, we look at its structure.

column = value

\[
\text{sel}(\cdot) = \begin{cases}
\frac{1}{|I|} & \text{if there is an index } I \text{ on column} \\
\frac{1}{10} & \text{otherwise}
\end{cases}
\]

column_1 = column_2

\[
\text{sel}(\cdot) = \begin{cases}
\frac{1}{\max\{|I_1|,|I_2|\}} & \text{if there are indexes on both cols.} \\
\frac{1}{|I_k|} & \text{if there is an index only on col. } k \\
\frac{1}{10} & \text{otherwise}
\end{cases}
\]

\(p_1 \text{ AND } p_2\)

\[
\text{sel}(\cdot) = \text{sel}(p_1) \cdot \text{sel}(p_2)
\]

\(p_1 \text{ OR } p_2\)

\[
\text{sel}(\cdot) = \text{sel}(p_1) + \text{sel}(p_2) - \text{sel}(p_1) \cdot \text{sel}(p_2)
\]
The selectivity rules we saw make a fair amount of assumptions:

- **uniform distribution** of data values within a column,
- **independence** between individual predicates.

Since these assumptions aren’t generally met, systems try to improve selectivity estimation by gathering **data statistics**.

- These statistics are collected offline and stored in the system catalog.

 IBM DB2: `RUNSTATS ON TABLE` ...

- The most popular type of statistics are **histograms**.
Example: Histograms in IBM DB2

```
SELECT SEQNO, COLVALUE, VALCOUNT
FROM SYSCAT.COLDIST
WHERE TABNAME = 'LINEITEM'
  AND COLNAME = 'L_EXTENDEDPRICE'
  AND TYPE = 'Q';
```

<table>
<thead>
<tr>
<th>SEQNO</th>
<th>COLVALUE</th>
<th>VALCOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+00000000000996.01</td>
<td>3001</td>
</tr>
<tr>
<td>2</td>
<td>+0000000004513.26</td>
<td>315064</td>
</tr>
<tr>
<td>3</td>
<td>+0000000007367.60</td>
<td>633128</td>
</tr>
<tr>
<td>4</td>
<td>+0000000011861.82</td>
<td>948192</td>
</tr>
<tr>
<td>5</td>
<td>+0000000015921.28</td>
<td>1263256</td>
</tr>
<tr>
<td>6</td>
<td>+0000000019922.76</td>
<td>1578320</td>
</tr>
<tr>
<td>7</td>
<td>+0000000024103.20</td>
<td>1896384</td>
</tr>
<tr>
<td>8</td>
<td>+0000000027733.58</td>
<td>2211448</td>
</tr>
<tr>
<td>9</td>
<td>+0000000031961.80</td>
<td>2526512</td>
</tr>
<tr>
<td>10</td>
<td>+0000000035584.72</td>
<td>2841576</td>
</tr>
<tr>
<td>11</td>
<td>+0000000039772.92</td>
<td>3159640</td>
</tr>
<tr>
<td>12</td>
<td>+0000000043395.75</td>
<td>3474704</td>
</tr>
<tr>
<td>13</td>
<td>+0000000047013.98</td>
<td>3789768</td>
</tr>
</tbody>
</table>

SYSCAT.COLDIST also contains information like

- the n most frequent values (and their frequency),
- the number of **distinct** values in each histogram bucket.

Histograms may even be manipulated **manually** to tweak the query optimizer.
Join Optimization

- We’ve now translated the query into a graph of **query blocks**.
 - Query blocks essentially are a **multi-way** Cartesian product with a number of selection predicates on top.
- We can estimate the **cost** of a given **execution plan**.
 - Use result size estimates in combination with the cost for individual join algorithms in the previous chapter.

We are now ready to **enumerate** all possible execution plans, *e.g.*, all possible **3-way** join combinations for a query block.

```plaintext
R \( \times \) S \( \times \) T
S \( \times \) R \( \times \) T
R \( \times \) T \( \times \) S
S \( \times \) T \( \times \) R
T \( \times \) R \( \times \) S
T \( \times \) S \( \times \) R
```

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018
How Many Such Combinations Are There?

- A join over \(n + 1 \) relations \(R_1, \ldots, R_{n+1} \) requires \(n \) binary joins.
- Its **root-level operator** joins sub-plans of \(k \) and \(n - k - 1 \) join operators \((0 \leq k \leq n - 1)\):

\[
\begin{array}{c}
\ast \\
\downarrow \\
k \text{ joins} \\
R_1, \ldots, R_k \\
\downarrow \\
n - k - 1 \text{ joins} \\
R_{k+1}, \ldots, R_{n+1}
\end{array}
\]

- Let \(C_i \) be the **number of possibilities** to construct a binary tree of \(i \) inner nodes (join operators):

\[
C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}.
\]
Catalan Numbers

This recurrence relation is satisfied by **Catalan numbers**:

\[C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!} \]

describing the number of ordered binary trees with \(n + 1 \) leaves.

For each of these trees, we can permute the input relations \(R_1, \ldots, R_{n+1} \), leading to

\[\frac{(2n)!}{(n+1)!n!} \cdot (n + 1)! = \frac{(2n)!}{n!} \]

possibilities to evaluate an \((n + 1)\)-way join.
The resulting search space is **enormous**:

<table>
<thead>
<tr>
<th>number of relations n</th>
<th>C_{n-1}</th>
<th>join trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>1,680</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>30,240</td>
</tr>
<tr>
<td>7</td>
<td>132</td>
<td>665,280</td>
</tr>
<tr>
<td>8</td>
<td>429</td>
<td>17,297,280</td>
</tr>
<tr>
<td>10</td>
<td>4,862</td>
<td>17,643,225,600</td>
</tr>
</tbody>
</table>

And we haven’t yet even considered the use of k **different join algorithms** (yielding another factor of $k^{(n-1)}$)!
The traditional approach to master this search space is the use of **dynamic programming**.

Idea:
- Find the cheapest plan for an n-way join in n passes.
- In each pass k, find the best plans for all k-relation sub-queries.
- **Construct** the plans in pass k from best i-relation and $(k - i)$-relation sub-plans found in earlier passes ($1 \leq i < k$).

Assumption:
- To find the optimal global plan, it is sufficient to only consider the optimal plans of its sub-queries.
Example: Four-Way Join

Pass 1 (best 1-relation plans)
Find the best access path to each of the R_i individually (considers index scans, full table scans).

Pass 2 (best 2-relation plans)
For each pair of tables R_i and R_j, determine the best order to join R_i and R_j ($R_i \Join R_j$ or $R_j \Join R_i$?):

$$\text{optPlan}\left(\{R_i, R_j\}\right) \leftarrow \text{best of } R_i \Join R_j \text{ and } R_j \Join R_i .$$

→ 12 plans to consider.

Pass 3 (best 3-relation plans)
For each triple of tables R_i, R_j, and R_k, determine the best three-table join plan, using sub-plans obtained so far:

$$\text{optPlan}\left(\{R_i, R_j, R_k\}\right) \leftarrow \text{best of } R_i \Join \text{optPlan}\left(\{R_j, R_k\}\right),$$
$$\text{optPlan}\left(\{R_j, R_k\}\right) \Join R_i, \quad R_j \Join \text{optPlan}\left(\{R_i, R_k\}\right), \ldots .$$

→ 24 plans to consider.
Pass 4 (best 4-relation plan)

For each set of four tables \(R_i, R_j, R_k, \) and \(R_l \), determine the best four-table join plan, using sub-plans obtained so far:

\[
\begin{align*}
\text{optPlan}(\{R_i, R_j, R_k, R_l\}) &\leftarrow \text{best of } R_i \bowtie \text{optPlan}(\{R_j, R_k, R_l\}), \\
\text{optPlan}(\{R_j, R_k, R_l\}) &\bowtie R_i, \quad R_j \bowtie \text{optPlan}(\{R_i, R_k, R_l\}), \ldots, \\
\text{optPlan}(\{R_i, R_j\}) &\bowtie \text{optPlan}(\{R_k, R_l\}), \ldots \\
\end{align*}
\]

→ 14 plans to consider.

- Overall, we looked at only 50 (sub-)plans (instead of the possible 120 four-way join plans; \(\uparrow \) slide 218).
- All decisions required the evaluation of \textbf{simple} sub-plans only (no need to re-evaluate the interior of \text{optPlan}(\cdot)).
Dynamic Programming Algorithm

Function: find_join_tree_dp(q(R₁, ..., Rₙ))

for i = 1 to n do
 optPlan(\{Rᵢ\}) ← access_plans(Rᵢ);
 prune_plans(optPlan(\{Rᵢ\}))

for i = 2 to n do
 foreach S ⊆ \{R₁, ..., Rₙ\} such that |S| = i do
 optPlan(S) ← \∅;
 foreach O ⊂ S do
 optPlan(S) ← optPlan(S) ∪
 possible_joins(optPlan(O), optPlan(S \ O));
 prune_plans(optPlan(S));

return optPlan(\{R₁, ..., Rₙ\});

- possible_joins(R, S) enumerates the possible joins between R and S (nested loops join, merge join, etc.).
- prune_plans(set) discards all but the best plan from set.
find_join_tree_dp() draws its advantage from filtering plan candidates early in the process.

In our example on slide 220, pruning in Pass 2 reduced the search space by a factor of 2, and another factor of 6 in Pass 3.

Some heuristics can be used to prune even more plans:

- Try to avoid Cartesian products.
- Produce left-deep plans only (see next slides).

Such heuristics can be used as a handle to balance plan quality and optimizer runtime.

DB2 UDB: SET CURRENT QUERY OPTIMIZATION = n
The algorithm on slide 222 explores all possible shapes a join tree could take:

- **left-deep**
- **bushy** (everything else)
- **right-deep**

Actual systems often prefer **left-deep** join trees.\(^{15}\)

- The **inner** relation is always a **base relation**.
- Allows the use of **index nested loops join**.
- Easier to implement in a **pipelined** fashion.

\(^{15}\)The seminal **System R** prototype, *e.g.*, considered only left-deep plans.
XPath evaluation over relationally encoded XML data

n-way self-join with a range predicate.

http://www.pathfinder-xquery.org/
Contrast the execution plans for a 8- and a 9-step path.

- **left-deep join tree**
- **bushy join tree**

- DB2’s optimizer essentially gave up in the face of 9+ joins.
Joining Many Relations

Dynamic programming still has exponential resource requirements:
- time complexity: $O(3^n)$
- space complexity: $O(2^n)$

This may still be too expensive
- for joins involving many relations ($\sim 10–20$ and more),
- for simple queries over well-indexed data (where the right plan choice should be easy to make).

The greedy join enumeration algorithm jumps into this gap.
Greedy Join Enumeration

1. **Function:** \texttt{find_join_tree_greedy(q(R_1,\ldots,R_n))}

2. \texttt{worklist \leftarrow \emptyset};

3. \texttt{for } \texttt{i = 1 \textbf{to} n \textbf{do}}

4. \hspace{1em} \texttt{worklist \leftarrow worklist \cup \texttt{best_access_plan}(R_i)};

5. \texttt{for } \texttt{i = n \textbf{downto} 2 \textbf{do}}

6. \hspace{1em} // \texttt{worklist = \{P_1,\ldots,P_i\}}

7. \hspace{1em} \texttt{find } P_j, P_k \in \texttt{worklist} \texttt{ and } \texttt{\ldots} \texttt{ such that cost}(P_j \Join \ldots P_k) \texttt{ is minimal} ;

8. \hspace{1em} \texttt{worklist \leftarrow worklist \setminus \{P_j, P_k\} \cup \{(P_j \Join \ldots P_k)\}} ;

 \hspace{1em} // \texttt{worklist = \{P_1\}}

9. \texttt{return} \texttt{ single plan left in worklist} ;

- In each iteration, choose the **cheapest** join that can be made over the remaining sub-plans.

- Observe that \texttt{find_join_tree_greedy()} operates similar to finding the optimum binary tree for **Huffman coding**.
Discussion

Greedy join enumeration:

- The greedy algorithm has $O(n^3)$ time complexity.
 - The loop has $O(n)$ iterations.
 - Each iteration looks at all remaining pairs of plans in worklist. An $O(n^2)$ task.

Other join enumeration techniques:

- Randomized algorithms: randomly rewrite the join tree one rewrite at a time; use hill-climbing or simulated annealing strategy to find optimal plan.

- Genetic algorithms: explore plan space by combining plans ("creating offspring") and altering some plans randomly ("mutations").
Consider the query

```
SELECT 0.O_ORDERKEY, L.L_EXTENDEDPRICE
FROM ORDERS O, LINEITEM L
WHERE 0.O_ORDERKEY = L.L_ORDERKEY
```

where table ORDERS is indexed with a **clustered index** OK_IDX on column O_ORDERKEY.

Possible table access plans are:

- **ORDERS**
 - **full table scan**: estimated I/Os: N_{ORDERS}
 - **index scan**: estimated I/Os: $N_{OK_IDX} + N_{ORDERS}$.

- **LINEITEM**
 - **full table scan**: estimated I/Os: $N_{LINEITEM}$.
Since the **full table scan** is the cheapest access method for both tables, our join algorithms will select them as the best 1-relation plans in Pass 1.\(^{17}\)

To **join** the two scan outputs, we now have the choices

- **nested loops join**,
- **hash join**, or
- **sort** both inputs, then use **merge join**.

Hash join or sort-merge join are probably the preferable candidates here, incurring a cost of \(\approx 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}})\).

\[\rightarrow \text{overall cost: } N_{\text{ORDERS}} + N_{\text{LINEITEM}} + 2(N_{\text{ORDERS}} + N_{\text{LINEITEM}}). \]

\(^{17}\)Dynamic programming and the greedy algorithm happen to do the same in this example.
A Better Plan

It is easy to see, however, that there is a better way to evaluate the query:

1. Use an index scan to access ORDERS. This guarantees that the scan output is already in $O_{ORDERKEY}$ order.

2. Then only sort LINEITEM and

3. join using merge join.

→ overall cost: $\left(N_{O_{IDX}} + N_{ORDERS} \right) + 3 \cdot N_{LINEITEM}$.

Although more expensive as a standalone table access plan, the use of the index pays off in the overall plan.
Interesting Orders

- The advantage of the index-based access to ORDERS is that it provides beneficial physical properties.
- Optimizers, therefore, keep track of such properties by annotating candidate plans.
- System R introduced the concept of interesting orders, determined by
 - ORDER BY or GROUP BY clauses in the input query, or
 - join attributes of subsequent joins (merge join).
- In prune_plans(), retain
 - the cheapest “unordered” plan and
 - the cheapest plan for each interesting order.
Join optimization essentially takes a set of relations and a set of join predicates to find the best join order.

By **rewriting** query graphs beforehand, we can improve the effectiveness of this procedure.

The **query rewriter** applies (heuristic) rules, without looking into the actual database state (no information about cardinalities, indexes, etc.). In particular, it

- **rewrites predicates** and
- **unnests queries**.
Predicate Simplification

Example: rewrite

```
SELECT *  
FROM LINEITEM L  
WHERE L.L_TAX * 100 < 5
```

into

```
SELECT *  
FROM LINEITEM L  
WHERE L.L_TAX < 0.05
```

Predicate simplification may enable the use of indexes and simplify the detection of opportunities for join algorithms.
Implicit join predicates as in

```sql
SELECT * 
FROM A, B, C 
WHERE A.a = B.b AND B.b = C.c
```

can be turned into explicit ones:

```sql
SELECT * 
FROM A, B, C 
WHERE A.a = B.b AND B.b = C.c 
AND A.a = C.c
```

This enables plans like

```
(A ⋈ C) ⋈ B .
```

((A ⋈ C) would have been a Cartesian product before.)
Nested Queries

SQL provides a number of ways to write nested queries.

- **Uncorrelated** sub-query:

```
SELECT *
FROM ORDERS O
WHERE O_CUSTKEY IN (SELECT C_CUSTKEY
                        FROM CUSTOMER
                        WHERE C_NAME = 'IBM Corp.'))
```

- **Correlated** sub-query:

```
SELECT *
FROM ORDERS O
WHERE O.O_CUSTKEY IN
      (SELECT C.C_CUSTKEY
       FROM CUSTOMER C
       WHERE C.C_ACCTBAL < O.O_TOTALPRICE)
```
Query Unnesting

- Taking query nesting literally might be **expensive**.
 - An uncorrelated query, *e.g.*, need not be re-evaluated for every tuple in the outer query.
- Oftentimes, sub-queries are only used as a syntactical way to express a **join** (or a semi-join).
- The query rewriter tries to detect such situations and **make the join explicit**.
- This way, the sub-query can become part of the regular **join order optimization**.

Summary

Query Parser
Translates input query into (SFW-like) query blocks.

Rewriter
Logical (database state-independent) optimizations; predicate simplification; query unnesting.

(Join) Optimization
Find “best” query execution plan based on a cost model (considering I/O cost, CPU cost, ...); data statistics (histograms); dynamic programming, greedy join enumeration; physical plan properties (interesting orders).

Database optimizers still are true pieces of art...
Download Picasso at