
Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2018

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 1

Part IX

Parallel Databases

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 381

Motivation

It is increasingly attractive to leverage parallelism available in hardware.

Reduced Cost:

Large monolithic systems are extremely complex to build.

Smaller systems sell at much higher volumes, with much better

price/performance ratio.

Reduced Energy Consumption:

Performance scales linearly with clock frequency; energy

consumption scales quadratically.

Additional cooling cost makes this even worse.

Modern chip designs are power-limited (; multi-core)

Prepare for Hardware Failures?

A spare COTS system is cheaper than a spare mainframe.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 382

Scaling with Parallelism

Desirable: speed-up and scale-up

number of CPUs

tr
a

n
sa

ct
io

n
s

p
er

se
co

n
d linear speed-up

sub-linear speed-up

of CPUs; DB size
tr

a
n

sa
ct

io
n

s
p

er
se

co
n

d

linear scale-up

sub-linear scale-up

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 383

Parallel Database Architectures

Different architectures have been proposed for parallel databases.

interconnect

CPU

mem

disk

CPU

mem

disk

CPU

mem

disk

· · ·

· · ·

· · ·

shared nothing

interconnect

global shared memory

CPU

disk

CPU

disk

CPU

disk

· · ·

· · ·

shared memory

interconnect

mem

CPU

disk

mem

CPU

disk

mem

CPU

disk

· · ·

· · ·

shared disk

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 384

Shared Memory

Advantages of shared memory architectures:

Porting to shared memory architecture (relatively) easy.

Problems of shared memory architectures:

Contention in interconnect

→ Here: memory contention

→ Hard to build scalable and fast interconnect.

Interference:

→ Addl. CPUs slow down existing ones (e.g., due to contention).

→ Suitable for low degrees of parallelism (up to few tens).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 385

Shared Disk, Shared Memory

Shared disk architectures have similar problems.

→ contention and interference problems

Further:

For read/write access, coherence tricky to get right.

→ Shared nothing seems to be the method of choice.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 386

Parallel Query Evaluation

Intra-query parallelism:

Pipeline parallelism:

→ Assign plan operators to CPUs; send tuples from CPU to CPU.

→ Only works for non-blocking operators.

→ Limited scalability: few operators per plan; load balancing?

Data parallelism:

· · ·

split

work

· · ·

work

· · ·

work

· · ·

· · ·

· · · merge

disk

scan

· · ·

disk

scan

· · ·

disk

scan

· · ·

· · ·

· · ·

· · ·

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 387

Data Parallelism

Data parallelism goes particularly well with data partitioning.

→ Distribute tuples over nodes (→ horizontal partitioning)

; Parallel scan; high I/O bandwidth

Round-Robin Partitioning:

Easy, trivial load balancing

Range Partitioning:

Need to access only those nodes that hold relevant data.

Data skew may lead to trouble.

May be beneficial for sorting, joining, etc.

Range boundaries?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 388

Data Parallelism

Hash Partitioning:

Data skew less of a problem

May also help certain operations (e.g., joins)

No knowledge about data or types required

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 389

Parallelizing Operator Evaluation

Scan: Easy

→ Scan-heavy queries benefit easily from data parallelism.

Sort:

Merge sort/external sort: run early stages in parallel, then merge

With range partitioning, merging becomes trivial.

→ Thus, first range-partition (re-distribute) data, then sort.

→ Determine range boundaries with help of sampling.

Join:

Partition (re-distribute) tuples (hash or range partitioning)

Ri 1 Si joins can now be computed locally.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 390

Parallel Joins (Using Merge Sort Locally)

input relation

range partition

local sort local sort local sort local sort

input relationinput relation

range partition and local sort

1
(local)

1
(local)

1
(local)

1
(local)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 391

Parallel Joins (here: MPSM)

input relation

range partition

local sort local sort local sort local sort

input relation

local sort local sort local sort local sort

input relation

1
scan scan scan scan

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 392

Instead: Sort, then Merge/Partition

input relation

local sort local sort local sort local sort

merge

Re-distributes (“shuffles”) likely limited by interconnect bandwidth.

Perform merge/join during shuffle

→ Leverage available CPU capacity while I/O-limited.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 393

Reduce Communication for Joins

Bloom filters23 can help reduce communication cost.

1 Partition and distribute outer join relation R.

2 On each node Hi , compute Bloom filter vector for Ri .

3 Broadcast all Bloom filters to all nodes.

4 Partition and distribute S , but filter tuples before sending.

5 Compute Ri 1 Si locally on all Hi .

23A Bloom filter is a compact data structure that can be used to filter data

according to a set of valid key values. We’ll discuss Bloom filters later in this course.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 394

	Parallel Databases

