Architecture and Implementation of Database Systems (Summer 2018)

Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Summer 2018

Part VII

Online Analytical Processing (OLAP)

Motivation

Scenario: A bookstore chain collects sales data:

Sales			
Book	City	Month	Units Sold
Arlington Road Atlas	Arlington	January	134
Arlington Road Atlas	Arlington	February	327
\vdots	\vdots	\vdots	\vdots
Arlington Road Atlas	Springfield	December	193
Gone With the Wind	Arlington	January	9
\vdots	\vdots	\vdots	\vdots
Tropical Food	Springfield	December	374

Motivation

Goal: Spread sheet-style analyses (\sim "Pivot Table")

	January	February	\ldots	Grand Total
Arlington	198	449	\ldots	1022
Boston	226	212	\ldots	707
Miami	152	130	\ldots	467
Springfield	304	498	\ldots	1303
Grand Total	880	1289	\ldots	3499

Challenge: Large data volumes
\rightarrow How do we model such data (e.g., in a relational system)?
\rightarrow How can we implement pivot tables efficiently?
\rightarrow What about k-dimensional data?

Data Cubes

Idea: Model data as a multi-dimensional cube

Data cube:

■ Facts are stored as cells of the cube.

- Facts have measures associated with them (here: sales counts).
■ Cells may be empty.

Real-world:

■ 4-12 dimensions

- Project to 2 or 3 for analysis/viewing

Relational Representation: Star Schema

Star Schema:

- One dimension table per dimension

■ Fact table entries reference dimension table entries.

Star Schema

Fact Table:

■ One row per multidimensional fact.
■ This table will hold the lion's share of the entire database.

Dimension Tables:

■ Key: Artificial key (usually an integer number)

- Typically: One column per level if dimension is hierarchical
\rightarrow Redundancy

OLAP is ran on data extracted from transactional system.
■ Load data in batches; most of it goes into fact table.
■ Fact table ends up approximately ordered by date.

"Slicing and Dicing"

Typical queries: aggregate over sub-ranges of the full cube.

SELECT SUM (Sold)

FROM Sales AS s, Books AS b
WHERE s.BookID = b.BookID
and b.Title = "Gone...."

Roll-Up, Drill-Down, Pivot Tables

Analysts will want to look at aggregates from many different angles.

Roll-Up / Drill-Down:

\rightarrow For hierarchical dimensions, move up or down the hierarchy
\rightarrow See more or less details, "zoom" in or out

Pivot Tables:

\rightarrow Visualize roll-up/drill-down (\sim dedicated OLAP tools)

	January	February	\ldots	Grand Total
Arlington	198	449	\ldots	1022
Boston	226	212	\ldots	707
Fiction	121	98	\ldots	346
\quad Cooking	105	114	\ldots	361
Miami	152	130	\ldots	467
Springfield	304	498	\ldots	1303
Grand Total	880	1289	\cdots	3499

SQL OLAP Extensions

A number of SQL extensions ease these tasks.
E.g., multi-dimensional grouping (\sim Pivot Table):

SELECT c.City, t.Month, SUM (s.Sold)
 FROM Sales AS s, Cities AS c, Time AS t WHERE s. DayID $=t$. DayID AND s.CityID = c. CityID GROUP BY CUBE (City, Month)

\rightarrow Likewise: GROUP BY ROLLUP (.)
E.g., ranking, partitioning

> SELECT c. City, t.Day, RANK () OVER (PARTITION BY City ORDER BY Sold) FROM Sales AS s, Cities AS c, Time AS t, Books AS b WHERE s. DayID $=t$.DayID AND s. CityID $=c$. CityID
> AND s. BookID $=b$.BookID AND b. Title $=$ "Gone..."

Star Join

The common query pattern is the star join.

Q How will a standard RDBMS execute such a query?

Indexes and Star Queries

Strategy 1: Index on value columns of dimension tables

1. For each dimension table D_{i} :
a. Use index to find matching dimension table rows $d_{i, j}$.
b. Fetch those $d_{i, j}$ to obtain key columns of D_{i}.
c. Collect a list of fact table rids that reference those dimension keys.

How?

2. Intersect lists of fact table rids.
3. Fetch remaining fact table rows, group, and aggregate.

Indexes and Star Queries

Strategy 2: Index on primary key of dimension tables

1. Scan fact table
2. For each fact table row f :
a. Fetch corresponding dimension table row d.
b. Check slice and dice conditions on d; skip to next fact table row if predicate not met.
c. Repeat 2. a for each dimension table.
3. Group and aggregate all remaining fact table rows.

Indexes and Star Queries

Q Problems and advantages of Strategy 1?

+ Fetch only relevant fact table rows (good for selective queries).
- Index \rightarrow fetch \rightarrow index \rightarrow intersect \rightarrow fetch is cumbersome.
- List intersection is expensive.

1. Again, lists may be large, intersection small.
2. Lists are generally not sorted.

Index-Only Queries

Problem \star can be reduced with a trick:

- Create an index that contains value and key column of the dimension table.
\rightarrow No fetch needed to obtain dimension key.
- Such indexes allow for index-only querying (\nearrow slide 174).
\rightarrow Acess only index, but not data pages of a table.
E.g.,

CREATE INDEX QuarterIndex ON DateDimension (Quarter, DateKey)
\rightarrow Will only use Quarter as a search criterion (but not DateKey).

Indexes and Star Queries

Problems and advantages of Strategy 2?

+ For small dimension tables, all indexes might fit into memory.
\rightarrow On the other hand, indexes might not be worth it; can simply build a hash table on the fly.
- Fact table is large \rightarrow many index accesses.
- Individually, each dimension predicate may have low selectivity.
E.g., four dimensions, each restricted with 10% selectivity:
\rightarrow Overall selectivity as low as 0.01%.
\rightarrow But as many as $10 \% / 1 \% / \ldots$ of fact table tuples pass individual dimension filters (and fact table is huge).
Together, dimension predicates may still be highly selective.
- Cost is independent of predicate selecitivites.

Implementing Star Join Using Hash Joins

■ (Hopefully) dimension subsets are small enough
\rightarrow Hash table(s) fit into memory.
■ Here, hash joins effectively act like a filter.

Implementing Star Join Using Hash Joins

Problems:

■ Which of the filter predicates is most restrictive? - Tough optimizer task!

■ A lot of processing time is invested in tuples that are eventually discarded.

■ This strategy will have real trouble as soon as not all hash tables fit into memory.

Hash-Based Filters

\rightarrow Use compact bit vector to pre-filter data.

Hash-Based Filters

- Size of bit vector is independent of dimension tuple size.
\rightarrow And bit vector is much smaller than dimension tuples.
■ Filtering may lead to false positives, however.
\rightarrow Must still do hash join in the end.
■ Key benefit: Discard tuples early.

Nice side effect:

■ In practice, will do pre-filtering according to all dimensions involved.
\rightarrow Can re-arrange filters according to actual(!) selectivity.

Bloom Filters

Bloom filters can improve filter efficiency．

Idea：

－Create（empty）bit field B with m bits．
■ Choose k independent hash functions．
■ For every dim．tuple，set k bits in B ，according to hashed key values．
〈1284，Salads，Cooking〉
〈1930，Tropical Food，Cooking〉

〈1735，Gone With the Wind，Fiction〉
■ To probe a fact tuple，check k bit positions
\rightarrow Discard tuple if any of these bits is 0 ．

Bloom Filters

Parameters:

■ Number of bits in B: m
\rightarrow Typically measured in "bits per stored entry"
■ Number of hash functions: k
\rightarrow Optimal: about 0.7 times number of bits per entry.
\rightarrow Too many hash functions may lead to high CPU load!

Example:

■ 10 bits per stored entry lead to a filter accuracy of about 1%.

Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version 2008.

Hub Star Join

What do you think about this query plan?
\leadsto Join dimension tables first, then fact table as last relation.

Hub Star Join

Joins between dimension tables are effectively Cartesian products.

\rightarrow Clearly won't work if (filtered) dimension tables are large.

Hub Star Join

Idea:

■ Cartesian product approximates the set of foreign key values relevant in the fact table.
■ Join Cartesian product with fact table using index nested loops join (multi-column index on foreign keys).

Hub Star Join

Advantages:

+ Fetch only relevant fact table rows.
+ No intersection needed.
+ No sorting or duplicate removal needed.

Down Sides:

- Cartesian product overestimates foreign key combinations in the fact table.
\rightarrow Many key combinations won't exist in the fact table.
\rightarrow Many unnecessary index probes.

Overall:

■ Hub Join works well if Cartesian product is small.

Zigzag Join

Join Indices

To reduce join cost, we could pre-compute (partial) join results.
\sim Database terminology: "materialize"
$~$ More generally: "materialized views"
Pre-computed join results are also called join indices.
Example: Cities \bowtie Sales

RID lists

■ Type 1: join key $\rightarrow\left\langle\left\{\right.\right.$ rid $\left._{\text {Cities }}\right\}$, $\left\{\right.$ rid $\left.\left._{\text {Sales }}\right\}\right\rangle$ (Record ids from Cities and Sales that contain given join key value.)

■ Type 2: rid ${ }_{\text {Cities }} \rightarrow\left\{\right.$ rid $\left._{\text {Sales }}\right\}$
(Record ids from Sales that match given record in Cities.)

- Type 3: dim value $\rightarrow\left\{\right.$ rid $\left._{\text {Sales }}\right\}$
(Record ids from Sales that join with Cities tuples that have given dimension value.)
(Conventional B^{+}-trees are often value $\rightarrow\{$ rid $\}$ mappings; cf. slide 80.)

Example: Cities \bowtie Sales Join Index

Cities			
rid	CtylD	City	State
c_{1}	6371	Arlington	VA
c_{2}	6590	Boston	MA
c_{3}	7882	Miami	FL
c_{4}	7372	Springfield	MA
\vdots	\vdots	\vdots	\vdots

Sales				
rid	BkID	CtylD	DayID	Sold
s_{1}	372	6371	95638	17
s_{2}	372	6590	95638	39
s_{3}	1930	6371	95638	21
s_{4}	2204	6371	95638	29
s_{5}	2204	6590	95638	13
s_{6}	1930	7372	95638	9
s_{7}	372	7882	65748	53
\vdots	\vdots	\vdots	\vdots	\vdots

Star Join with Join Indices

1 For each of the dimensions, find matching Sales rids.
2 Intersect rid lists to determine relevant Sales.

Star Join with Join Indices

The strategy makes rid list intersection a critical operation.
\rightarrow Rid lists may be sorted.
\rightarrow Efficient implementation is (still) active research topic.
Down side:
■ Rid list sorted only for (per-dimension) point lookups.

Challenge:

■ Efficient rid list implementation.

Bitmap Indices

Idea: Create bit vector for each possible column value.
Example: Relation that holds information about students:

Students		
LegiNo	Name	Program
1234	John Smith	Bachelor
2345	Marc Johnson	Master
3456	Rob Mercer	Bachelor
4567	Dave Miller	PhD
5678	Chuck Myers	Master

Program Index			
$3 S c$	MSc	PhD	Dipl
1	0	0	0
0	1	0	0
1	0	0	0
0	0	1	0
0	1	0	0

Query Processing with Bitmap Indexes

Benefit of bitmap indexes:

■ Boolean query operations (and, or, etc.) can be performed directly on bit vectors.

```
SELECT ...
    FROM Cities
    WHERE State = 'MA'
    AND (City = 'Boston' OR City = 'Springfield')
                                    \downarrow
BMA}\(\mp@subsup{B}{\mathrm{ Boston }}{}\vee\mp@subsup{B}{\mathrm{ Springfield }}{}
```

■ Bit operations are well-supported by modern computing hardware (\nearrow SIMD).

Equality vs. Range Encoding

Alternative encoding for ordered domains:

Students		
LegiNo	Name	Semester
1234	John Smith	3
2345	Marc Johnson	2
3456	Rob Mercer	4
4567	Dave Miller	1

Semester Index				
1	2	3	4	5
1	1	1	0	0
1	1	0	0	0
1	1	1	1	0
1	0	0	0	0

(set $B_{c_{i}}[k]=1$ for all c_{i} smaller or equal than the attribute value $a[k]$).
Why would this be useful?
Range predicates can be evaluated more efficiently:

$$
c_{i}>a[k] \geq c_{j} \leftrightarrow\left(\neg B_{c_{i}}[k]\right) \wedge B_{c_{j}}[k] .
$$

(but equality predicates become more expensive).

Data Warehousing Example

Index: D4.brand -> \{RID\}

RID	D4.id	D4.product	D4.brand	D4.group
0	1	Latitude E6400	Dell	Computers
1	2	Lenovo T61	Lenovo	Computers
2	3	SGH-i600	Samsung	Handheld
3	4	Axim X5	Dell	Handheld
4	5	i900 OMNIA	Samsung	Mobile
5	6	XPERIA X1	Sony	Mobile

Index: D4.group -> \{RID\}

$B_{\text {Dell }}$
1
0
0
1
0
0

$B_{\text {Len }}$
0
1
0
0
0
0

$B_{\text {Sony }}$
0
0
0
0
0
1

Bitmap Index: D4.brand

$B_{\text {Com }}$	$B_{\text {Hand }}$ 1 1 0 0 0 0 0
1	
0	

$B_{\text {Mob }}$
0
0
0
0
1
1

Query Processing: Example

Sales in group 'Computers' for brands 'Dell', 'Lenovo'?
SELECT SUM (F.price)
FROM D4
WHERE group = 'Computer'
AND (brand = 'Dell'
OR brand='Lenovo')
\rightarrow Calculate bit-wise operation

$$
B_{\text {Com }} \wedge\left(B_{\text {Dell }} \vee B_{\text {Len }}\right)
$$

to find matching records.

Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.
Here: Type 2 index for Cities \bowtie Sales

Cities			
rid	CtylD	City	State
c_{1}	6371	Arlington	VA
c_{2}	6590	Boston	MA
c_{3}	7882	Miami	FL
c_{4}	7372	Springfield	MA
\vdots	\vdots	\vdots	\vdots

Sales				
rid	BkID	CtylD	DayID	Sold
s_{1}	372	6371	95638	17
s_{2}	372	6590	95638	39
s_{3}	1930	6371	95638	21
s_{4}	2204	6371	95638	29
s_{5}	2204	6590	95638	13
s_{6}	1930	7372	95638	9
s_{7}	372	7882	65748	53
\vdots	\vdots	\vdots	\vdots	\vdots

Idx		
c_{1}	c_{2}	\cdots
1	0	\cdots
0	1	\cdots
1	0	\cdots
1	0	\cdots
0	1	\cdots
0	0	\cdots
0	0	\cdots
\vdots	\vdots	\ddots

\rightarrow One bit vector per RID in Cities.
\rightarrow Length of bit vector \equiv length of fact table (Sales).

Bitmap Indices for Star Joins

Similarly: Type 3 index State \rightarrow \{Sales.rid $\}$

Cities			
rid	CtyID	City	State
c_{1}	6371	Arlington	VA
c_{2}	6590	Boston	MA
c_{3}	7882	Miami	FL
c_{4}	7372	Springfield	MA
\vdots	\vdots	\vdots	\vdots

Sales				
rid	BkID	CtylD	DayID	Sold
s_{1}	372	6371	95638	17
s_{2}	372	6590	95638	39
s_{3}	1930	6371	95638	21
s_{4}	2204	6371	95638	29
s_{5}	2204	6590	95638	13
s_{6}	1930	7372	95638	9
s_{7}	372	7882	65748	53
\vdots	\vdots	\vdots	\vdots	\vdots

ddx			
VA	MA	$F L$	\cdots
1	0	0	\cdots
0	1	0	\cdots
1	0	0	\cdots
1	0	0	\cdots
0	1	0	\cdots
0	1	0	\cdots
0	0	1	\cdots
\vdots	\vdots	\ddots	

\rightarrow One bit vector per State value in Cities.
\rightarrow Length of bit vector \equiv length of fact table (Sales).

Space Consumption

For a column with n distinct values, n bit vectors are required to build a bitmap index.

For a table wit N rows, this leads to a space consumption of

$$
N \cdot n \text { bits }
$$

for the full bitmap index.
This suggests the use of bitmap indexes for low-cardinality attributes.
\rightarrow e.g., product categories, sales regions, etc.
For comparison: A 4-byte integer column needs $N \cdot 32$ bits.
\rightarrow For $n \lesssim 32$, a bitmap index is more compact.

Reducing Space Consumption

For larger n, space consumption can be reduced by
1 alternative bit vector representations or
2 compression.
Both may be a space/performance trade-off.

Decomposed Bitmap Indexes:

■ Express all attribute values v as a linear combination

$$
v=v_{0}+\underbrace{c_{1}} v_{1}+\underbrace{c_{1} c_{2}} v_{2}+\cdots+\underbrace{c_{1} \cdots c_{k}} v_{k} \quad\left(c_{1}, \ldots, c_{k} \text { constants }\right)
$$

■ Create a separate bitmap index for each variable v_{i}.

Decomposed Bitmap Indexes

Example: Index column with domain [0, ... 999].
■ Regular bitmap index would require 1000 bit vectors.

- Decomposition ($c_{1}=c_{2}=10$):

$$
v=1 v_{1}+10 v_{2}+100 v_{3}
$$

■ Need to create $\mathbf{3}$ bitmap indexes now, each for $\mathbf{1 0}$ different values $\rightarrow 30$ bit vectors now instead of 1000 .
■ However, need to read 3 bit vectors now (and and them) to answer point query.

Decomposed Bitmap Indexes

- Query:
$a=576=5 * 100+$ 7*10+6*1
- RIDs:
$\mathrm{B}_{\mathrm{v} 3,5} \wedge$
$\mathrm{~B}_{\mathrm{v} 2,7} \wedge$
$\mathrm{~B}_{\mathrm{v} 1,6}=$
$[0010 \ldots 0]$
$=>$
RID $3, \ldots$

RID	a
0	998
1	999
2	576
3	578
1000	976

$\mathrm{B}_{\mathrm{v} 1,0}$	$\mathrm{B}_{\mathrm{v} 1,1}$	$\mathrm{B}_{\mathrm{v} 1,2}$	$\mathrm{B}_{\mathrm{v} 1,3}$
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
$\mathrm{B}_{\mathrm{v} 20}$	$\mathrm{B}_{\mathrm{v} 21}$	B^{122}	$\mathrm{B}_{\mathrm{v} 2,3}$
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
$B^{\text {v3, } 0}$	$\mathrm{B}_{\mathbf{v 3}, 1}$	$\mathrm{B}_{\mathrm{v} 3,2}$	$B_{\text {v3,3 }}$
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

$\mathrm{B}_{\mathrm{v} 1,4}$ 0 0 0 0 0
$\mathrm{~B}_{\mathrm{v} 2,4}$
0
0
0
0
0

$B_{\text {vi, } 6}$
0
0
1
0
1

$\mathrm{B}_{\mathrm{v} 1,7}$
0
0
0
0
0

$\mathrm{B}_{\mathrm{v} 1,8}$
1
0
0
1
0

$\mathrm{B}_{\mathrm{v} 1,9}$
0
1
0
0
0

$B_{\mathrm{V} 2,6}$
0
0
0
0
0

$B_{\mathrm{v} 2.7}$
0
0
1
1
1

$B_{\mathrm{V} 2,8}$
0
0
0
0
0

$B_{v 29}$
1
1
0
0
0

$B_{V 3,4}$
0
0
0
0
0

$B_{\mathrm{V} 3.5}$
0
0
1
1
0

$B_{V 3,6}$
0
0
0
0
0

$B_{\mathrm{N} 3,7}$
0
0
0
0
0

$B_{V 3,8}$
0
0
0
0
0

$B_{13.9}$
1
1
0
0
1

Space/Performance Trade-Offs

Setting c_{i} parameters allows to trade space and performance:

source: Chee-Yong Chan and Yannis loannidis. Bitmap Index Design and Evaluation. SIGMOD 1998.

Compression

Orthogonal to bitmap decomposition: Use compression.
■ E.g., straightforward equality encoding for a column with cardinality $n: 1 / n$ of all entries will be 0 .

Q Which compression algorithm would you choose?

Compression

Problem: Complexity of (de)compression \leftrightarrow simplicity of bit operations.

- Extraction and manipulation of individual bits during (de)compression can be expensive.
■ Likely, this would off-set any efficiency gained from logical operations on large CPU words.

Thus:

■ Use (rather simple) run-length encoding,
■ but respect system word size in compression scheme.
$\nearrow \mathrm{Wu}$, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient Compression. TODS, vol. 31(1). March 2006.

Word-Aligned Hybrid (WAH) Compression

Compress into a sequence of 32-bit words:

Bit \square tells whether this is a fill word or a literal word.
\square Fill word ($\square=1$):

- Bit \square tells whether to fill with 1 s or 0 s .
- Remaining $30 \square$ bits indicate the number of fill bits.
\rightarrow This is the number of 31-bit blocks with only 1 s or 0 s .
\rightarrow e.g., $\square=3$: represents $93 \mathrm{1s} / 0 \mathrm{~s}$.
■ Literal word ($\square=0$):
■ Copy $31 \square$ bits directly into the result.

WAH: Effectiveness of Compression

WAH is good to counter the space explosion for high-cardinality attributes.

■ At most 2 words per ' 1 ' bit in the data set
\sim At most $\approx 2 \cdot N$ words for a table with N rows, even for large n (assuming a bitmap that uses equality encoding).

WAH: Effectiveness of Compression

■ If (almost) all values are distinct, additional bookkeeping may need some more space $\left(\sim 4 \cdot 10^{8}\right.$ bits for cardinality 10^{8}).

Bitmap Indexes in Oracle 8

Index Size

Encoding \leftrightarrow Bitmap Sparseness/Attribute Cardinality

The most space-efficient bitmap representation depends on the number of distinct values (i.e., the sparseness of the bitmap).

■ low attribute cardinality (dense bitmap)
\rightarrow can use un-compressed bitmap
WAH compression won't help much (but also won't hurt much)
■ medium attribute cardinality
\rightarrow use (WAH-)compressed bitmap
■ high attribute cardinality (many distinct values; sparse bitmap)
\rightarrow Encode "bitmap" as list of bit positions
In addition, compressed bitmaps may be a good choice for data with clustered content (this is true for many real-world data).

Bitmaps \leftrightarrow Row IDs?

Bitvectors encode a list of integer positions. But we need RIDs. What gives?

RID Lists

Conversely, bitmaps may be a good way to encode lists of rows.
\rightarrow Represent RID lists in B-tree leaves as (compressed) bit vectors.

In practice:

■ Divide table into segments ($\approx 32,000$ tuples/segment).
■ Separate bitmap for each segment.
■ Per segment can decide on WAH \leftrightarrow RID list.
\rightarrow E.g., Oracle's bitmap indexes are essentially that (though exact encoding is proprietary).

Benefits:

■ May be able to skip over entire segments.
■ Keep update cost reasonable.

