Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Summer 2018

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Part VII

Online Analytical Processing (OLAP)

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Scenario: A bookstore chain collects sales data:

Unis ol

Arlington Road Atlas Arlington January 134
Arlington Road Atlas Arlington February 327
Arlington Road Atlas Springfield December 193
Gone With the Wind Arlington January 9
Tropical Food Springfield December 374

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Goal: Spread sheet-style analyses (~ “Pivot Table™)

Ly ey [] Grand ot

Arlington 198 449 1022
Boston 226 212 - 707
Miami 152 130 - 467
Springfield 304 498 - -- 1303

Grand Total 880 1289 - 3499

Challenge: Large data volumes
— How do we model such data (e.g., in a relational system)?
— How can we implement pivot tables efficiently?
— What about k-dimensional data?

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Idea: Model data as a multi-dimensional cube

Jan Data cube:
b 58777 Facts are stored as cell
3 m Facts are stored as cells
Vot 17577
of the cube.
Arlington m Facts have measures
Boston associated with them
- (here: sales counts).
Miam Cell b t
m Cells may be empty.
Springfield y Pty
Real-world:
%'25” @b RS : .
X «° m 4-12 dimensions
\\QOS X . & m Project to 2 or 3 for
NNES 2\ Ivsis /viewi
analysis/viewing

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Relational Representation: Star Schema

Star Schema:
Cities

m One dimension table per dimension

m Fact table entries reference .

dimension table entries. / '

BooKD

Books

|\|

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Fact Table:
m One row per multidimensional fact.

m This table will hold the lion’s share of the entire database.

Dimension Tables:
m Key: Artificial key (usually an integer number)
m Typically: One column per level if dimension is hierarchical
— Redundancy

OLAP is ran on data extracted from transactional system.
m Load data in batches; most of it goes into fact table.
m Fact table ends up approximately ordered by date.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

“Slicing and Dicing"”

Typical queries: aggregate over sub-ranges of the full cube.

Fe Januafy
are, 5248 7
Arlington
Boston SELECT SUM (Sold)
FROM Sales AS s, Books AS b
Miami WHERE s.BookID = b.BookID
Springfield AND b.Title = "Gone..."
>
F& @
S o Q
& o
e«

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Roll-Up, Drill-Down, Pivot Tables

Analysts will want to look at aggregates from many different angles.

Roll-Up / Drill-Down:
— For hierarchical dimensions, move up or down the hierarchy
— See more or less details, “zoom" in or out

Pivot Tables:
— Visualize roll-up/drill-down (~~ dedicated OLAP tools)

Ly ey [[Grand ot

Arlington 198 449 1022
Boston 226 212 .- 707
Fiction 121 98 - 346
Cooking 105 114 - - 361
Miami 152 130 --- 467
Springfield 304 498 - -- 1303

Grand Total 8380 12898 F-- 3499

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

SQL OLAP Extensions

A number of SQL extensions ease these tasks.

E.g., multi-dimensional grouping (~ Pivot Table):

SELECT c.City, t.Month, SUM (s.Sold)
FROM Sales AS s, Cities AS ¢, Time AS t
WHERE s.DaylD = t.DaylD AND s.CitylD = c.CitylD
GROUP BY CUBE (City, Month)

— Likewise: GROUP BY ROLLUP (-)
E.g., ranking, partitioning

SELECT c.City, t.Day,
RANK () OVER (PARTITION BY City ORDER BY Sold)
FROM Sales AS s, Cities AS ¢, Time AS t, Books AS b
WHERE s.DaylD = t.DaylD AND s.CitylD = c.CitylD
AND s.BookID = b.BookID AND b. Title = “Gone..."

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

The common query pattern is the star join.

Cities

D How will a standard RDBMS execute such a query?

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Indexes and Star Queries

Strategy 1: Index on value columns of dimension tables

For each dimension table D;:
Bl Use index to find matching dimension table rows d, ;.
B Fetch those d;; to obtain key columns of D;.
Collect a list of fact table rids that reference those
dimension keys.
D How?

Intersect lists of fact table rids.
Fetch remaining fact table rows, group, and aggregate.

© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Indexes and Star Queries

Strategy 2: Index on primary key of dimension tables

Scan fact table
For each fact table row f:

Fetch corresponding dimension table row d.

B Check slice and dice conditions on d;
skip to next fact table row if predicate not met.
Repeat H. for each dimension table.

Group and aggregate all remaining fact table rows.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Indexes and Star Queries

S Problems and advantages of Strategy 1?
+ Fetch only relevant fact table rows (good for selective queries).
— Index — fetch — index — intersect — fetch is cumbersome. *

— List intersection is expensive.

Again, lists may be large, intersection small.
Lists are generally not sorted.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Index-Only Queries

Problem * can be reduced with a trick:
m Create an index that contains value and key column of the
dimension table.
— No fetch needed to obtain dimension key.
m Such indexes allow for index-only querying (" slide 174).
— Acess only index, but not data pages of a table.

Eg.,

CREATE INDEX Quarterindex
ON DateDimension (Quarter, DateKey)

— Will only use Quarter as a search criterion (but not DateKey).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Indexes and Star Queries

X Problems and advantages of Strategy 27

+ For small dimension tables, all indexes might fit into memory.
— On the other hand, indexes might not be worth it; can simply
build a hash table on the fly.
— Fact table is large — many index accesses.

— Individually, each dimension predicate may have low selectivity.

E.g., four dimensions, each restricted with 10 % selectivity:

— Overall selectivity as low as 0.01 %.
— But as many as 10%/1%/... of fact table tuples pass
individual dimension filters (and fact table is huge).

Together, dimension predicates may still be highly selective.

e Cost is independent of predicate selecitivites.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Implementing Star Join Using Hash Joins

GRPBY
\
HSJOIN
/ ™~
o HSJOIN
\ ~
Books o — HSJOIN
\ / ~
Time o Sales
\
Cities

m (Hopefully) dimension subsets are small enough
— Hash table(s) fit into memory.

m Here, hash joins effectively act like a filter.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Implementing Star Join Using Hash Joins

Problems:

m Which of the filter predicates is most restrictive? — Tough optimizer
task!

m A lot of processing time is invested in tuples that are eventually
discarded.

m This strategy will have real trouble as soon as not all hash tables fit
into memory.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Hash-Based Filters

-7 HSJOIN

///’ / //)\

A HSJOIN
| Books | o HSJOIN
Rt . | ~_
Time o — FILTER
\ \
Cities Sales
[1284[Sa|ads [Cooking]
[o] [
[l930[TropicaI Food [Cooking] [474[Ita|ian Cooking[Cooking]
[o] [

— Use compact bit vector to pre-filter data.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Hash-Based Filters

m Size of bit vector is independent of dimension tuple size.
— And bit vector is much smaller than dimension tuples.
m Filtering may lead to false positives, however.
— Must still do hash join in the end.
m Key benefit: Discard tuples early.

Nice side effect:
m In practice, will do pre-filtering according to all dimensions involved.
— Can re-arrange filters according to actual(!) selectivity.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bloom Filters

Bloom filters can improve filter efficiency.
Idea:
m Create (empty) bit field B with m bits.
m Choose k independent hash functions.

m For every dim. tuple, set k bits in B, according to hashed key values.

(1284, Salads, Cooking)
(1930, Tropical Food, Cooking)

IIRENEEEEENEEEEEEENENINEEEERETNEEE
12 12 12

(1735, Gone With the Wind, Fiction)

m To probe a fact tuple, check k bit positions
— Discard tuple if any of these bits is O.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bloom Filters

Parameters:
m Number of bits in B: m
— Typically measured in “bits per stored entry”
m Number of hash functions: k

— Optimal: about 0.7 times number of bits per entry.
— Too many hash functions may lead to high CPU load!

Example:
m 10 bits per stored entry lead to a filter accuracy of about 1 %.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Example: MS SQL Server

Microsoft SQL Server uses hash-based pre-filtering since version 2008.

Jens Teubner -

Hash Join

Join Reduction
Infe 2
SK_D1=

Hash Join

Filter
SK_D2=
D2_0%

Dimension

1

Dimension
2

Architecture & Implementation of DBMS - Summer 20

Hub Star Join

S What do you think about this query plan?

~ Join dimension tables first, then fact table as last relation.

GRI‘DBY
e \O_
/ \ fa‘ct
/ \ dir‘n4
0/ \ dir‘n3
d|r‘n1 dir‘nz

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Hub Star Join

Joins between dimension tables are effectively Cartesian products.

GRPBY

J
} / \U
/ \ \
o fact

x/x\a dir‘n4
a/ \a dir‘n3
| |

dim1 dim2

— Clearly won't work if (filtered) dimension tables are large.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Hub Star Join

Idea:

GRI‘DBY
INLJ

L
X/\J
/\ \

c‘f T date

product store

\
sales

m Cartesian product approximates the set of foreign key values
relevant in the fact table.

m Join Cartesian product with fact table using index nested loops
join (multi-column index on foreign keys).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Hub Star Join

Advantages:

+ Fetch only relevant fact table rows.

+ No intersection needed.

+ No sorting or duplicate removal needed.
Down Sides:

— Cartesian product overestimates foreign key combinations in the
fact table.

— Many key combinations won't exist in the fact table.
— Many unnecessary index probes.

Overall:

m Hub Join works well if Cartesian product is small.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Zigzag Join

cartesian product of dimension keys multi-column index on aroma sales
| prodkey | classkey | perkey | | prodkey | classkey | perkey |
1 1 1 — 1 1 1
1 1 3 1
1 1 5 UngFBLEtive 1 2 2 >
1 1 5 probes which 3 |___2—1
1 1 7 ey o 1 7
1 2 1 2 1 2
1 2 3 FrF o Y A A TR TR
1 7 5] ‘G e e
o
T 3 1y /0 0 Lme] e [e
1 3 3
1 J 5
1 3 6
1 3 1
? 1 1 A
2 1 3
2 1 5 — & probes
T ———— main

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Join Indices

To reduce join cost, we could pre-compute (partial) join results.
~» Database terminology: “materialize”

~> More generally: “materialized views"

Pre-computed join results are also called join indices.

Example: Cities X Sales RID lists
m Type 1: join key — ({ridcities} , {r1d sales })

(Record ids from Cities and Sales that contain given join key value.)
m Type 2: rid cities — {ridSales}

(Record ids from Sales that match given record in Cities.)
m Type 3: dim value — {ridsajes }

(Record ids from Sales that join with Cities tuples that have given
dimension value.)

(Conventional BT -trees are often value — {rid} mappings; cf. slide 80.)

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Example: Cities X Sales Join Index

6371 Arlington VA s1 372 6371 95638
cz 6590 Boston MA s, 372 6590 95638 39
c3 7882 Miami FL s3 1930 6371 95638 21

¢ 7372 Springfield MA s4 2204 6371 95638 29
. . . . ss 2204 6590 95638 13
Ss 1930 7372 95638 9
s 372 7882 65748 53

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Star Join with Join Indices

GRPBY

rid list FETCH

intersection / \

/ N \Sales
IXSCAN IXSCAN IXSCAN

Cities/Sales Time/Sales Books/Sales

For each of the dimensions, find matching Sales rids.

Intersect rid lists to determine relevant Sales.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Star Join with Join Indices

The strategy makes rid list intersection a critical operation.

— Rid lists may be sorted.
— Efficient implementation is (still) active research topic.

Down side:

m Rid list sorted only for (per-dimension) point lookups.

Challenge:

m Efficient rid list implementation.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bitmap Indices

Idea: Create bit vector for each possible column value.

Example: Relation that holds information about students:

Students

[Siudens |

Program Index

5S¢ [Msc [PhD [Dol
0 0

1234 John Smith Bachelor 0
2345 Marc Johnson Master 1 0 0
3456 Rob Mercer Bachelor 0 0 0
4567 Dave Miller PhD 0 1 0
5678 Chuck Myers Master 1 0 0
} vector

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Query Processing with Bitmap Indexes

Benefit of bitmap indexes:

m Boolean query operations (and, or, etc.) can be performed directly
on bit vectors.

SELECT - -
FROM Cities
WHERE State=‘MA’
AND (City = ‘Boston’ OR City = ‘Springfield")

1
Bua A (BBoston \ BSpringfield)

m Bit operations are well-supported by modern computing hardware

(_,*SIMD).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Equality vs. Range Encoding

Alternative encoding for ordered domains:

1234 John Smith 1 1 1 0 0
2345 Marc Johnson 2 1 1 0 0 O
3456 Rob Mercer 4 1 1 1 1 0
4567 Dave Miller 1 1 0 0 0 O

(set B [k] =1 for all ¢; smaller or equal than the attribute value a[k]).

S Why would this be useful?
Range predicates can be evaluated more efficiently:

ci > alk] > ¢ < (=Bglk]) A Bglk] .

(but equality predicates become more expensive).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Data Warehousing Example

Index: D4.brand -> {RID} g
1 0 0 0 B
0 1 0 0 2
0 0 1 0 £
D4.id D4.product 1 0 0 0 R
0 1 Latitude E6400 |Dell Computers 0 0 1 0 g
1 2 Lenovo T61 Lenovo |Computers 0 0 0 1 2
2 3 SGH-i600 Samsung |Handheld
3 4 Axim X5 Dell Handheld w
4 5] i900 OMNIA Samsung |Mobile p 0 0 g
5 6 XPERIA X1 Sony Mobile °
1 0 0 =]
[oN
0 1 0 2
0 1 0 E
0 0 1 %
Index: D4.group ->{RID} [0 1 £

Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Query Processing: Example

Sales in group ‘Computers’ for brands ‘Dell’, ‘Lenovo’?

@
i El
SELECT SUM (F.price) p . . . E
FROM D4 1R mmin >
WHERE group=’Computer’ 0 0 1 0 &
AND (brand=’Dell’ 1 0 0 0 R
OR brand=’Lenovo’) | 0 ! 0)
0 0 0 1 2
@
— Calculate bit-wise operation 1 0 o 3
1 0 0 3
Bcom N (Bpei V BLen) 0 1 0 %
0 1 0 Q
to find matching records. 0 ° 1 El
0 0 1 5

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bitmap Indices for Star Joins

Bitmap indices are useful to implement join indices.

Here: Type 2 index for Cities X Sales

EEE
c1 6371 Arlington VA s; 372 6371 95638 17 1 0 ---
¢ 6590 Boston MA s, 372 6590 95638 39 o 1 -
c3 7882 Miami FL s3 1930 6371 95638 21 1 0 -
cs 7372 Springfield MA ss 2204 6371 95638 29 1 0 -

: . : . ss 2204 6590 95638 13 o 1 -
ss 1930 7372 95638 9 0 0 -
0 0 -

s; 372 7882 65748 53

— One bit vector per RID in Cities.
— Length of bit vector = length of fact table (Sales).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bitmap Indices for Star Joins

Similarly: Type 3 index State — {Sales.rid}

0x
[AIVAFLL]
6371 Arlington VA s1 372 6371 95638

cz 6590 Boston MA s, 372 6590 95638 39
c; 7882 Miami FL s3 1930 6371 95638 21
cs 7372 Springfield MA sy 2204 6371 95638 29
. : : . ss 2204 6590 95638 13

Sss 1930 7372 95638 9

s; 372 7882 65748 53

[cNeoNoN N el
O PR OORrO
HOOOOOOoO

— One bit vector per State value in Cities.
— Length of bit vector = length of fact table (Sales).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Space Consumption

For a column with n distinct values, n bit vectors are required to build a
bitmap index.

For a table wit N rows, this leads to a space consumption of
N - n bits

for the full bitmap index.
This suggests the use of bitmap indexes for low-cardinality attributes.

— e.g., product categories, sales regions, etc.

For comparison: A 4-byte integer column needs N - 32 bits.

— For n < 32, a bitmap index is more compact.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Reducing Space Consumption

For larger n, space consumption can be reduced by
alternative bit vector representations or
compression.

Both may be a space/performance trade-off.

Decomposed Bitmap Indexes:

m Express all attribute values v as a linear combination

v=vw+ a i+tacow+---+c--ck vk (c1,...,Ccx constants).
~— —~— ——

m Create a separate bitmap index for each variable v;.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Decomposed Bitmap Indexes

Example: Index column with domain [0, ..., 999].
m Regular bitmap index would require 1000 bit vectors.

m Decomposition (¢ = ¢ = 10):
v=1v; + 10w + 100v3 .

m Need to create 3 bitmap indexes now, each for 10 different values
— 30 bit vectors now instead of 1000.

m However, need to read 3 bit vectors now (and and them) to
answer point query.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Decomposed Bitmap Indexes

* Query: 0 0 0 0 0 0 0 0 1 0
a=576=5*100+ 0 0 0 0 0 0 0 0 0 1
T%104+6%1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

* RIDs:

0 0 0 0 0 0 0 0
Bys,s A L 9
Bv2,7 A
Boi,6 = 0 0 0 0 0 0 0 0 0 1
[0010..0] 0 0 0 0 0 0 0 0 0 1
=>RID 3 0 0 0 0 0 0 0 1 0 0
T 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 998
1 999
0 0 0 0 0 0 0 0 0 1
2 576 0 0 0 0 0 0 0 0 0 1
3 578 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1000 | 976 0 0 0 0 0 0 0 0 0 1

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2

Space/Performance Trade-Offs

Setting ¢; parameters allows to trade space and performance:

10

Time-Optimal Index -4
Space-Optimal Index -&-—
All Index ™

Tire (Expected Number of Btmap Seans)

400 800
Space {Number of Bilmaps)

source: Chee-Yong Chan and Yannis loannidis. Bitmap Index Design and
Evaluation. SIGMOD 1998.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Compression

Orthogonal to bitmap decomposition: Use compression.

m £.g., straightforward equality encoding for a column with cardinality
n: 1/n of all entries will be 0.

S Which compression algorithm would you choose?

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Compression

Problem: Complexity of (de)compression <> simplicity of bit operations.
m Extraction and manipulation of individual bits during
(de)compression can be expensive.

m Likely, this would off-set any efficiency gained from logical
operations on large CPU words.

Thus:
m Use (rather simple) run-length encoding,

m but respect system word size in compression scheme.

" Wu, Otoo, and Shoshani. Optimizing Bitmap Indices with Efficient
Compression. TODS, vol. 31(1). March 2006.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Word-Aligned Hybrid (WAH) Compression

Compress into a sequence of 32-bit words:
ENEEEEEEEEEEEEEEEEEEEEEEEEEEEEED

Bit [l tells whether this is a fill word or a literal word.

= Fill word (ll = 1):

m Bit [] tells whether to fill with 1s or Os.
m Remaining 30 M bits indicate the number of fill bits.

— This is the number of 31-bit blocks with only 1s or Os.
— e.g., = 3: represents 93 1s/0s.

m Literal word (ll = 0):
= Copy 31 M bits directly into the result.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

WAH: Effectiveness of Compression

WAH is good to counter the space explosion for high-cardinality
attributes.
m At most 2 words per ‘1’ bit in the data set
~ At most ~ 2 - N words for a table with N rows, even for large n
(assuming a bitmap that uses equality encoding).

2 T - R e o
EPCEE S
Lo “?o—‘“ 3
5 se I3
=3 N -
® : =
: =
L]

5 4 ™
2 n
£ a)
® O
g F
g 0.5 f

o 0.5f SN
£ :g b -e- random t
. | . =2 =
.g 'I'-v ko f=3 "
» ,r:;' z=1 @
4" - z= 3

0.25 * +

10' 10° 10° 10° @

cardinarlity of attribute

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

WAH: Effectiveness of Compression

4
°
@
2t ®
ap°°a W
w1 ;)0 n-at**‘f*
° P -
g +.+++++++++‘H'++++H+++++++‘”'++
"+
o 0.5} g}*
= ot
2 &
N ax
® 02 ¢
[}
é -©- random
01 @ e f=2
e =3
f=4
0.05
10° 10° 10* 10° 10°
cardinarlity of attribute
(b) n = 108

m If (almost) all values are distinct, additional bookkeeping may need
some more space (~ 4 - 10% bits for cardinality 108).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bitmap Indexes in Oracle 8

Index Size
25

15 +

10 +

Size (Mbytes)

|
T
o
o
=

1000 +
10000 +
40000 +

100000

250000 +

500000 +
1000000

Cardinality

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Encoding <> Bitmap Sparseness/Attribute Cardinality

The most space-efficient bitmap representation depends on the number
of distinct values (i.e., the sparseness of the bitmap).

m low attribute cardinality (dense bitmap)

— can use un-compressed bitmap
WAH compression won't help much (but also won't hurt much)

® medium attribute cardinality
— use (WAH-)compressed bitmap

m high attribute cardinality (many distinct values; sparse bitmap)
— Encode “bitmap” as list of bit positions

In addition, compressed bitmaps may be a good choice for data with
clustered content (this is true for many real-world data).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bitmaps <> Row [Ds?

D Bitvectors encode a list of integer positions. But we need RIDs.
What gives?

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

RID Lists

Conversely, bitmaps may be a good way to encode lists of rows.
— Represent RID lists in B-tree leaves as (compressed) bit vectors.

In practice:
m Divide table into segments (= 32,000 tuples/segment).
m Separate bitmap for each segment.
m Per segment can decide on WAH < RID list.
— E.g., Oracle’s bitmap indexes are essentially that (though exact
encoding is proprietary).
Benefits:
m May be able to skip over entire segments.
m Keep update cost reasonable.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

	Online Analytical Processing (OLAP)
	Motivation

