
Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2018

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 1

Part IV

Multi-Dimensional Indexing

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 114

More Dimensions. . .

SELECT *

FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8000 AND 8999

AND REVENUE BETWEEN 3500 AND 6000

This query involves a range predicate in two dimensions.

Typical use cases with multi-dimensional data include

geographical data (GIS: Geographical Information Systems),

multimedia retrieval (e.g., image or video search),

OLAP (Online Analytical Processing).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 115

. . . More Challenges. . .

Queries and data can be points or regions.

point data

region data

poin
t

quer
y

re
gio

n
quer

y

region inclusion

or intersection

most interesting: k-nearest-neighbor search (k-NN)

. . . and you can come up with many more meaningful types of queries

over multi-dimensional data.

Note: All equality searches can be reduced to one-dimensional queries.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 116

Points, Lines, and Regions

*

*

BUCHBERG

STADEL
BEI NIEDERGLATT

TEUFEN

FLAACH

FLURLINGEN

WIL ZH

WASTERKINGEN

HÖRI

BACHS

NEFTENBACH

RÜDLINGEN

HÜNTWANGEN

GRÜNINGEN

OETWIL
AM SEE

HOMBRECHTIKON

HÜTTEN

MÖNCHALTORF

SCHÖNENBERG ZH

RINGWIL

OBERDÜRNTEN

BÄRETSWIL

MAUR

GOSSAU ZH

MASCHWANDEN

HAUSEN
AM ALBIS

OTTENBACH

AEUGST
AM ALBIS

KAPPEL
AM ALBIS

OBFELDEN

OBERLUNKHOFEN

GIESSHÜBEL

OETWIL AN
DER LIMMAT

SPREITENBACH
SHOPPING CENTER

BERGDIETIKON

OBEREMBRACH

NÜRENSDORF

FÄLLANDEN

BRÜTTENREGENSBERG

BOPPELSEN

UNTERENGSTRINGEN

GEROLDSWIL

SCHLEINIKON

HÜTTIKON

STELZENACKER
STERNENBERG

RUSSIKON

VOLKETSWIL

SITZBERG

KYBURG

ELSAU

WILDBERG

HITTNAU

SCHLATT BEI
 WINTERTHUR

ELGG

EIDBERG

ELLIKON
AN DER THUR

KLEINANDELFINGEN

OBERSTAMM-
HEIM

GUNDETSWIL

OBERNEUNFORN

RHEINAU

HIRZEL

FEUERTHALEN

WAGEN

FALTIGBERG

SCHLOSS LAUFEN A. RH.

DACHSEN

MARTHALEN

ANDELFINGEN

HÜNTWANGEN-
WIL

GLATTFELDEN

KAISERSTUHL AG

NIE
DERW

ENIN
GENDORF

SCHÖFF
LIS

DORF-

 O
BERW

ENIN
GEN

STEINMAUR

DIELSDORF

OBERGLATT
RÜMLANG

EMBRACH-
RORBAS

PFUNGEN-

WÜLFLINGEN

TÖSS

OSSINGEN

OTELFINGEN

OTELFINGEN
GOLFPARK

BUCHS-
DÄLLIKON

REGENSDORF-
WATT AFFOLTERN

SEEBACH

KLOTEN

BALSBERG

OPFIKON

OERLIKON

WALLISELLEN

SCHLIEREN ALTSTETTEN

HARDBRÜCKE

URDORF

WEIHERMATT

BIRMENSDORF ZH

BONSTETTEN-

UITIKON
WALDEGG

STETTBACH

STADELHOFEN

TIEFENBRUNNEN

ZOLLIKON

GOLDBACH

KÜSNACHT
ZH

HEDINGEN

AFFOLTERN
AM ALBIS

METTMENSTETTEN

KNONAU

LANGNAU-GATTIKON

ADLISWIL

WIEDIKON SELNAU

ENGE

WOLLISHOFEN

KILCHBERG

RÜSCHLIKON

THALWIL

OBERRIEDEN

HORGEN

ERLENBACH ZH

WINKEL
AM ZÜRICHSEE

HERRLIBERG-
FELDMEILEN

MEILEN UETIKON

MÄNNEDORF

ZOLLIKERBERG

ZUMIKON

DÜBENDORF

SCHWERZENBACH ZH

NÄNIKON-GREIFENSEE

AATHAL
KEMPTEN

PFÄFFIKON ZH

FEHRALTORF

ILLNAU

DIETLIKON

BASSERSDORF

KEMPTTHAL

AU ZH

RIC
HTE

RSW
IL

STÄFA UERIKON FELDBACH

KEMPRATEN

BÄCH
FR

EIE
NBACH

BURGHALDEN

SAMSTAGERN
WOLLERAU

JONA

TANN-DÜRNTEN

GIBSWIL

FISCHENTHAL

STEG

BAUMA

SALAND

WILA

TURBENTHAL

RÄMISMÜHLE-
ZELL

RIKON

KOLLBRUNN

SENNHOF-KYBURG

ELGG

SCHOTTIKONRÄTERSCHEN

WIESENDANGEN

GRÜZE

OBERWINTERTHUR

WALLRÜTI

REUTLINGEN

DINHARD

THALHEIM-ALTIKON

RICKENBACH-ATTIKON

HENGGART

HETTLINGEN

STAMMHEIM

WIPKINGEN

LEIMBACH

NIEDERHASLI

GLATTBRUGG

FREIENBACH SOB

OBERRIEDEN DORF

HORGEN OBERDORF

SOOD-
OBERLEIMBACH

REHALP

BLUMENAU

RAFZ

WEISSLINGEN

EGLISAU

FORCH

EGG

HURDEN

NEFTENBACH

SCHINDELLEGI-
FEUSISBERG

WETTSWIL

ZWEIDLEN

GLANZENBERG

GRÜNENFELD

SIHLAU

WILDPARK-HÖFLI

HEGI

23

13

18

12

17

14

15 61

24 60

11

10

21

22 70

62

63

20 64

71

16

35

72

73

343332

31

42 43
33

8382

81

52

53

41

51

55

54

56

50

84 21
30

30
40

80
WÄDENSWIL RAPPERSWIL

ESSLINGEN

WETZIKON

PFÄFFIKON SZ

RÜTI ZH

HINWIL

SIHLBRUGG

DIETIKON

UETLIBERG

NIEDERGLATT

ZÜRICH
FLUGHAFEN

BÜLACH

NIE
DERW

ENIN
GEN

ZÜRICH HB

SEEN

SEUZACH

WINTERTHUR

EFFRETIKON

USTER

WALDBUBIKON

SIHLWALD

ALTIKON

REPPISCHHOF

Tarifzonen | Fare zones

© Zürcher Verkehrsverbund/PostAuto Region Zürich, 12.2007

51

Bahnstrecke mit Bahnhof

Regionalbus

Schiff

Zonennummer

Die Tarifzonen 10 (Stadt Zürich)
und 20 (Stadt Winterthur) werden
für die Preisberechnung doppelt
gezählt.

Verbundfahrausweise berechtigen
während der Gültigkeitsdauer zu
beliebigen Fahrten in den gelösten
Zonen.

10*

20*

51

Railway with Station

Regional bus

Boat

Zone number

Fare zones 10 (Zurich City) and 20
(Winterthur City) each count as two
zones when calculating the fare.

You can travel as often as you like on
your ZVV ticket within the fare zones
and period shown on the ticket.

10*

20*

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 117

. . . More Solutions

Quad Tree [Finkel 1974] K-D-B-Tree [Robinson 1981]

R-tree [Guttman 1984] Grid File [Nievergelt 1984]

R+-tree [Sellis 1987] LSD-tree [Henrich 1989]

R*-tree [Geckmann 1990] hB-tree [Lomet 1990]

Vp-tree [Chiueh 1994] TV-tree [Lin 1994]

UB-tree [Bayer 1996] hB-Π-tree [Evangelidis 1995]

SS-tree [White 1996] X-tree [Berchtold 1996]

M-tree [Ciaccia 1996] SR-tree [Katayama 1997]

Pyramid [Berchtold 1998] Hybrid-tree [Chakrabarti 1999]

DABS-tree [Böhm 1999] IQ-tree [Böhm 2000]

Slim-tree [Faloutsos 2000] landmark file [Böhm 2000]

P-Sphere-tree [Goldstein 2000] A-tree [Sakurai 2000]

Note that none of these is a “fits all” solution.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 118

Can’t We Just Use a B+-tree?

Maybe two B+-trees, over ZIPCODE and REVENUE each?

Can only scan along either index at once, and both of them produce

many false hits.

If all you have are these two indices, you can do index intersection: perform

both scans in separation to obtain the rids of candidate tuples. Then compute

the (expensive!) intersection between the two rid lists (DB2: IXAND).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 119

Hmm, . . . Maybe With a Composite Key?

ZIPCODE

REVENUE

〈REVENUE, ZIPCODE〉 index
ZIPCODE

REVENUE

〈ZIPCODE, REVENUE〉 index

Exactly the same thing!

Indices over composite keys are not symmetric: The major

attribute dominates the organization of the B+-tree.

Again, you can use the index if you really need to. Since the second argument is

also stored in the index, you can discard non-qualifying tuples before fetching

them from the data pages.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 120

Multi-Dimensional Indices

B+-trees can answer one-dimensional queries only.7

We’d like to have a multi-dimensional index structure that

is symmetric in its dimensions,

clusters data in a space-aware fashion,

is dynamic with respect to updates, and

provides good support for useful queries.

We’ll start with data structures that have been designed for

in-memory use, then tweak them into disk-aware database indices.

7Toward the end of this chapter, we’ll see UB-trees, a nifty trick that uses

B+-trees to support some multi-dimensional queries.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 121

“Binary” Search Tree

In k dimensions, a “binary tree” becomes a 2k-ary tree.

Each data point partitions the data

space into 2k disjoint regions.

In each node, a region points to

another node (representing a

refined partitioning) or to a special

null value.

This data structure is a point

quad tree.
↗ Finkel and Bentley. Quad Trees: A Data
Structure for Retrieval on Composite Keys.

Acta Informatica, vol. 4, 1974.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 122

Searching a Point Quad Tree

?

?

!

1 Function: p search (q, node)

2 if q matches data point in node

then

3 return data point ;

4 else

5 P ← partition containing q ;

6 if P points to null then

7 return not found ;

8 else

9 node ′ ← node pointed to by

P ;

10 return

p search (q, node ′) ;

1 Function: pointsearch (q)

2 return p search (q, root) ;© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 123

Inserting into a Point Quad Tree

Inserting a point qnew into a quad tree happens analogously to an

insertion into a binary tree:

1 Traverse the tree just like during a search for qnew until you

encounter a partition P with a null pointer.

2 Create a new node n′ that spans the same area as P and is

partitioned by qnew, with all partitions pointing to null.

3 Let P point to n′.

Note that this procedure does not keep the tree balanced.

→ → → →

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 124

Range Queries

To evaluate a range query8, we may need to follow several children of a

quad tree node node:

1 Function: r search (Q, node)

2 if data point in node is in Q then

3 append data point to result ;

4 foreach partition P in node that intersects with Q do

5 node ′ ← node pointed to by P ;

6 r search (Q, node ′) ;

1 Function: regionsearch (Q)

2 return r search (Q, root) ;

8We consider rectangular regions only; other shapes may be answered by querying

for the bounding rectangle and post-processing the output.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 125

Point Quad Trees—Discussion

Point quad trees

" are symmetric with respect to all dimensions and

" can answer point queries and region queries.

But

% the shape of a quad tree depends on the insertion order of its

content, in the worst case degenerates into a linked list,

% null pointers are space inefficient (particularly for large k).

In addition,

/ they can only store point data.

Also remember that quad trees are designed for main memory.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 126

k-d Trees

Index k-dimensional data, but

keep the tree binary.

For each tree level l use a

different discriminator

dimension dl along which to

partition.

Typically: round robin

This is a k-d tree.
↗ Bentley. Multidimensional Binary
Search Trees Used for Associative

Searching. Comm. ACM, vol. 18, no. 9,

Sept. 1975.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 127

k-d Trees

k-d trees inherit the positive properties of the point quad trees, but

improve on space efficiency.

For a given point set, we can also construct a balanced k-d tree:9

1 Function: kdtree (pointset, level)

2 if pointset is empty then

3 return null ;

4 else

5 p ← median from pointset (along dlevel) ;

6 points left ← {v ∈ pointset where vdlevel < pdlevel};
7 points right ← {v ∈ pointset where vdlevel ≥ pdlevel};
8 n ← new k-d tree node, with data point p ;

9 n.left ← kdtree (points left, level + 1) ;

10 n.right ← kdtree (points right, level + 1) ;

11 return n ;

9vi : coordinate i of point v .
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 128

Balanced k-d Tree Construction

→ → →

→ → → →
a

b

c

d

e

f

g

h

Resulting tree shape: d

e

g

b

a

c

h f

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 129

K-D-B-Trees

k-d trees improve on some of the deficiencies of point quad trees:

" We can balance a k-d tree by re-building it.

(For a limited number of points and in-memory processing, this may be

sufficient.)

" We’re no longer wasting big amounts of space.

% k-d trees are not really symmetric with respect to space dimensions.

It’s time to bring k-d trees to the disk. The K-D-B-Tree

uses pages as an organizational unit

(e.g., each node in the K-D-B-tree fills a page) and

uses a k-d tree-like layout to organize each page.

↗ John T. Robinson. The K-D-B-Tree: A Search Structure for Large

Multidimensional Dynamic Indexes. SIGMOD 1981.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 130

K-D-B-Tree Idea

page 0

◦ ◦

◦

◦· · · ◦· · ·
◦ · · ·

page 1

◦· · ·
◦· · · ◦· · ·

page 2
◦ ◦

◦ · · ·

page 3

◦

...

◦

...

page 4

page 5

region pages:

contain entries

〈region, pageID〉
no null pointers

form a balanced tree

all regions disjoint

and rectangular

point pages:

contain entries

〈point, rid〉
; B+-tree leaf nodes

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 131

K-D-B-Tree Operations

Searching a K-D-B-Tree works straightforwardly:

Within each page determine all regions Ri that contain the

query point q (intersect with the query region Q).

For each of the Ri , consult the page it points to and recurse.

On point pages, fetch and return the corresponding record for

each matching data point pi .

When inserting data, we keep the K-D-B-Tree balanced, much like

we did in the B+-tree:

Simply insert a 〈region, pageID〉 (〈point, rid〉) entry into a

region page (point page) if there’s sufficient space.

Otherwise, split the page.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 132

Splitting a Point Page

Splitting a point page p:

1 Choose a dimension i and an i-coordinate xi along which to split,

such that the split will result in two pages that are not overfull.

2 Move data points p with pi < xi and pi ≥ xi to new pages pleft and

pright (respectively).

3 Replace 〈region, p〉 in the parent of p with 〈left region, pleft〉
〈right region, pright〉.

Step 3 may cause an overflow in p’s parent and, hence, lead to a split of

a region page.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 133

Splitting a Region Page

Splitting a point page and moving its data points to the resulting

pages is straightforward.

In case of a region page split, by contrast, some regions may

intersect with both sides of the split (e.g., page 0 on slide 131).

split

region crossing the split

Such regions need to be split, too.

This can cause a recursive splitting downward (!) the tree.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 134

Example: Page 0 Split in Tree on Slide 131

new root

page 0

◦ ◦

page 6

◦ ◦

page 1 page 2

page 7

page 3

Root page 0 → pages 0 and 6 (; creation of new root).

Region page 1 → pages 1 and 7 (point pages not shown).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 135

K-D-B-Trees—Discussion

K-D-B-Trees

" are symmetric with respect to all dimensions,10

" cluster data in a space-aware and page-oriented fashion,

" are dynamic with respect to updates, and

" can answer point queries and region queries.

However,

/ we still don’t have support for region data and

/ K-D-B-Trees (like k-d trees) won’t handle deletes dynamically.

This is because we always partitioned the data space such that

every region is rectangular and

regions never intersect.

10However, split dimensions must be chosen, which re-introduces asymmetry.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 136

R-Trees

R-trees do not have the disjointness requirement.

R-tree inner or leaf nodes contain 〈region, pageID〉 or 〈region, rid〉
entries (respectively). region is the minimum bounding rectangle

that spans all data items reachable by the respective pointer.

Every node contains between d and 2d entries (; B+-tree).11

Insertion and deletion algorithms keep an R-tree balanced at all

times.

R-trees allow the storage of point and region data.

↗ Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial

Searching. SIGMOD 1984.

11except the root node
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 137

R-Tree: Example

page 0

◦

◦

◦

page 1
◦

◦· · ·
◦· · ·

page 2

◦

◦

page 3◦
◦

· · ·

◦ · · ·

page 6

page 7

page 8

page 9

in
n

er
n

o
d

es
le

a
f

n
o

d
es

order: d = 2

region data

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 138

R-Tree: Searching and Inserting

While searching an R-tree, we may have to descend into more than one

child node for point and region queries (↗ range search in point quad

trees, slide 125).

Inserting into an R-tree very much resembles B+-tree insertion:

1 Choose a leaf node n to insert the new entry.

Try to minimize the necessary region enlargement(s).

2 If n is full, split it (resulting in n and n′) and distribute old and new

entries evenly across n and n′.

Splits may propagate bottom-up and eventually reach the root

(↗ B+-tree).

3 After the insertion, some regions in the ancestor nodes of n may

need to be adjusted to cover the new entry.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 139

Splitting an R-Tree Node

To split an R-tree node, we have more than one alternative.

bad split* good split*
*according
to Guttman

Heuristic: Minimize the totally covered area.

Exhaustive search for the best split infeasible.

Guttman proposes two ways to approximate the search.

Follow-up papers (e.g., the R*-tree) aim at improving the quality of

node splits.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 140

R-Tree: Deletes

All R-tree invariants (slide 137) are maintained during deletions.

1 If an R-tree node n underflows (i.e., less than d entries are left

after a deletion), the whole node is deleted.

2 Then, all entries that existed in n are re-inserted into the R-tree (as

discussed before).

Note that Step 1 may lead to a recursive deletion of n’s parent.

Deletion, therefore, is a rather expensive task in an R-tree.

I Spacial indexing in mainstream database implementations.

Indexing in commodity systems is typically based on R-trees.

Yet, only few systems implement them out of the box (e.g.,

PostgreSQL).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 141

Bit Interleaving

We saw earlier that a B+-tree over concatenated fields 〈a, b〉
doesn’t help our case, because of the asymmetry between the role

of a and b in the index.

What happens if we interleave the bits of a and b (hence, make the

B+-tree “more symmetric”)?

a = 42 b = 17
00101010 00010001

0010101000010001

〈a, b〉 (concatenation)

a = 42 b = 17
00101010 00010001

0000100110001001

a and b interleaved

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 142

Z-Ordering

a

b〈a, b〉 (concatenated)

a

b
a and b interleaved

Both approaches linearize all coordinates in the value space

according to some order. ↗ see also slide 120

Bit interleaving leads to what is called the Z-order.

The Z-order (largely) preserves spacial clustering.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 143

B+-trees Over Z-Codes

Use a B+-tree to index Z-codes of multi-dimensional data.

Each leaf in the B+-tree describes an interval in the Z-space.

Each interval in the Z-space describes a region in the

multi-dimensional data space.

x1

x2
x3

x4
x5

x6

x7

x8

x9

x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 3 4 20 21 35 36 47 48 63

To retrieve all data points in a query region Q, try to touch only

those leave pages that intersect with Q.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 144

UB-Tree Range Queries

E
xa
m
p
le
b
y
V
o
lk
e
r
M
a
rk
l
a
n
d
R
u
d
o
lf
B
a
ye
r,
ta
ke
n
fr
o
m

h
t
t
p
:
/
/
m
i
s
t
r
a
l
.
i
n
.
t
u
m
.
d
e
/

After each page processed, perform an index

re-scan () to fetch the next leaf page that

intersects with Q.

1 Function: ub range (Q)

2 cur ← z(Qbottom,left) ;

3 while true do

// search B+-tree page containing cur (↗ slide 70)

4 page ← search (cur);

5 foreach data point p on page do

6 if p is in Q then

7 append p to result ;

8 if region in page reaches beyond Qtop,right then

9 break ;

// compute next Z-address using Q and data on current page

10 cur ← get next z address (Q, page);

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 145

UB-Trees—Discussion

The cost of a region query is linear in the size of the result Q and

logarithmic with respect to the stored data volume N

(4·Q2d · O(logd N)).

UB-trees are fully dynamic, a property inherited from the

underlying B+-trees.

The use of other space-filling curves to linearize the data space is

discussed in the literature, too. E.g., Hilbert curves.

I UB-trees have been commercialized in the Transbase® database

system.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 146

Spaces with High Dimensionality

For large k , all the techniques we discussed become ineffective:

E.g., for k = 100, we’d get 2100 ≈ 1030 partitions per node in a

point quad tree. Even with billions of data points, almost all of

these are empty.

Consider a really big search region, cube-sized covering 95 % of the

range along each dimension:

data space

query region

95%

100%

For k = 100, the probability of a point being

in this region is still only 0.95100 ≈ 0.59%.

We experience the curse of dimensionality here.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 147

Page Selectivty for k-NN Search

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45

%
 V

ec
to

r/
Le

af
 b

lo
ck

s
vi

si
te

d

Number of dimensions in vectors

N=50’000, image database, k=10

Scan
R*-Tree
X-Tree
VA-File

Data: Stephen Bloch. What’s Wrong with High-Dimensionality Search. VLDB 2008.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 148

Query Performance in High Dimensions

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45

E
la

ps
ed

 T
im

e
fo

r
N

N
-s

ea
rc

h
(m

s)

Number of dimensions in vectors

N=50’000, image database, k=10

Scan
R*-ree
X-tree

VA-File

VA-File: vector approximation file (|VA-File| � |data file|)
Scan VA-File and use it as a filter for actual disk pages.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 149

Wrap-Up

Point Quad Tree

k-dimensional analogy to binary trees; main memory only.

k-d Tree, K-D-B-Tree

k-d tree: partition space one dimension at a time (round-robin);

K-D-B-Tree: B+-tree-like organization with pages as nodes, nodes

use a k-d-like structure internally.

R-Tree

regions within a node may overlap; fully dynamic; for point and

region data.

UB-Tree

use space-filling curve (Z-order) to linearize k-dimensional data,

then use B+-tree.

Curse Of Dimensionality

most indexing structures become ineffective for large k ; fall back to

seq. scanning and approximation/compression.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 150

	Multi-Dimensional Indexing
	The Problem
	B+-trees…
	… over single columns
	… over composite keys

	Point Quad Trees
	Overview
	Point (Equality) Search
	Inserting Data
	Region Queries
	Discussion

	k-d trees
	Balanced k-d Tree Construction

	K-D-B-Trees
	K-D-B-Tree Operations
	Splitting a Point Page
	Splitting a Region Page
	K-D-B-Trees: Discussion

	R-Trees
	Example
	Searching and Inserting
	Splitting R-Tree Nodes

	UB-Trees
	Bit Interleaving / Z-Ordering
	B+-Trees over Z-Codes
	Range Queries
	UB-Trees: Discussion

	Spaces with High Dimensionality
	Wrap-Up

