Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group
jens.teubner@cs.tu-dortmund.de

Summer 2018

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Part IV

Multi-Dimensional Indexing

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

More Dimensions. . .

SELECT *
FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8000 AND 8999
AND REVENUE BETWEEN 3500 AND 6000

This query involves a range predicate in two dimensions.

Typical use cases with multi-dimensional data include
m geographical data (GIS: Geographical Information Systems),
m multimedia retrieval (e.g., image or video search),
m OLAP (Online Analytical Processing).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

... More Challenges. . .

Queries and data can be points or regions.

X oé\\
N &
& O
\\
$ &
_ region inclusion

region data 1 or intersection
point data \

most interesting: k-nearest-neighbor search (k-NN)

and you can come up with many more meaningful types of queries
over multi-dimensional data.

Note: All equality searches can be reduced to one-dimensional queries.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Points, Lines, and Regions

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

... More Solutions

Quad Tree [Finkel 1974]
R-tree [Guttman 1984]
Rt-tree [Sellis 1987]
R*-tree [Geckmann 1990]
Vp-tree [Chiueh 1994]
UB-tree [Bayer 1996]
SS-tree [White 1996]
M-tree [Ciaccia 1996]
Pyramid [Berchtold 1998]
DABS-tree [B6hm 1999]
Slim-tree [Faloutsos 2000]
P-Sphere-tree [Goldstein 2000]

K-D-B-Tree [Robinson 1981]
Grid File [Nievergelt 1984]
LSD-tree [Henrich 1989]
hB-tree [Lomet 1990]
TV-tree [Lin 1994]
hB-M-tree [Evangelidis 1995]
X-tree [Berchtold 1996]
SR-tree [Katayama 1997]
Hybrid-tree [Chakrabarti 1999]
|Q-tree [Bohm 2000]
landmark file [Bohm 2000]
A-tree [Sakurai 2000]

Note that none of these is a “fits all" solution.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Can't We Just Use a BT-tree?

m Maybe two BT -trees, over ZIPCODE and REVENUE each?

m Can only scan along either index at once, and both of them produce
many false hits.

m If all you have are these two indices, you can do index intersection: perform
both scans in separation to obtain the rids of candidate tuples. Then compute
the (expensive!) intersection between the two rid lists (DB2: IXAND).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Hmm, ... Maybe With a Composite Key?

REVENUE REVENUE

ZIPCODE ZIPCODE
(REVENUE, ZIPCODE) index (ZIPCODE, REVENUE) index

m Exactly the same thing!
Indices over composite keys are not symmetric: The major
attribute dominates the organization of the BT -tree.

m Again, you can use the index if you really need to. Since the second argument is
also stored in the index, you can discard non-qualifying tuples before fetching
them from the data pages.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Multi-Dimensional Indices

m BT-trees can answer one-dimensional queries only.”

m We'd like to have a multi-dimensional index structure that
m is symmetric in its dimensions,
m clusters data in a space-aware fashion,
m is dynamic with respect to updates, and
m provides good support for useful queries.

m We'll start with data structures that have been designed for
in-memory use, then tweak them into disk-aware database indices.

"Toward the end of this chapter, we'll see UB-trees, a nifty trick that uses
BT -trees to support some multi-dimensional queries.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

“Binary” Search Tree

In k dimensions, a “binary tree” becomes a 2X-ary tree.

m Each data point partitions the data
space into 2 disjoint regions.

m In each node, a region points to
another node (representing a
refined partitioning) or to a special

o |9 null value.
g

m This data structure is a point
quad tree.

' Finkel and Bentley. Quad Trees: A Data
Structure for Retrieval on Composite Keys.
Acta Informatica, vol. 4, 1974.

i
paj

o

ko
K]

\e‘l
[+ <L
[=)

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Searching a Point Quad Tree

1 Function: p_search (g, node)
2 if g matches data point in node

T 1 then
3 L return data point ;
«? 4 else
5 P <« partition containing q ;
6 if P points to null then
7 L return not found ;
o |9 = 8 else

: [y T° P 9 node’ + node pointed to by

N P :
10 return

: . p-search (q, node’) :
Ll £ 1

1 Function: pointsearch (q)

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Inserting into a Point Quad Tree

Inserting a point gnew into a quad tree happens analogously to an
insertion into a binary tree:

Traverse the tree just like during a search for gnew until you
encounter a partition P with a null pointer.

Create a new node n’ that spans the same area as P and is
partitioned by gnew, With all partitions pointing to null.

Let P point to n'.

Note that this procedure does not keep the tree balanced.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

To evaluate a range query®, we may need to follow several children of a
quad tree node node:

1 Function: r_search (@, node)

N

if data point in node is in Q then
L append data point to result ;

w

IS

foreach partition P in node that intersects with Q do
5 node’ < node pointed to by P ;
r_search (Q, node’) ;

1 Function: regionsearch (Q)

2 return r_search (Q, root) ;

8We consider rectangular regions only; other shapes may be answered by querying
for the bounding rectangle and post-processing the output.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Point Quad Trees—Discussion

Point quad trees
¢/ are symmetric with respect to all dimensions and

¢/ can answer point queries and region queries.

But

X the shape of a quad tree depends on the insertion order of its
content, in the worst case degenerates into a linked list,

X null pointers are space inefficient (particularly for large k).

In addition,
® they can only store point data.

Also remember that quad trees are designed for main memory.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

m Index k-dimensional data, but
J keep the tree binary.

m For each tree level / use a
different discriminator
o— dimension d, along which to
partition.
£ . m Typically: round robin
w m This is a k-d tree.
' Bentley. Multidimensional Binary

iz
J J Search Trees Used for Associative

Searching. Comm. ACM, vol. 18, no. 9,

J:@ . i @l Sept. 1975.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

k-d trees inherit the positive properties of the point quad trees, but
improve on space efficiency.

For a given point set, we can also construct a balanced k-d tree:°

1 Function: kdtree (pointset, level)

2 if pointset is empty then
3 L return null ;

4 else

5 p < median from pointset (along deye) ;

6 points,e < {v € pointset where Vg, < Pdpe i
7 points,ign < {v € pointset where vq,,., > Pdp.. };
8 n < new k-d tree node, with data point p ;

9 n.left < kdtree (pointss , level + 1) ;

10 n.right < kdtree (pointsigy , level + 1) ;

11 return n ;

9v;: coordinate i of point v.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Balanced k-d Tree Construction

Oo) % [e] . % [e] % [e]
o o f-
a
— — — — el
o ° o o b
g
Resulting tree shape: d
e C
/ N\ / \

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

K-D-B-Trees

k-d trees improve on some of the deficiencies of point quad trees:

¢/ We can balance a k-d tree by re-building it.

(For a limited number of points and in-memory processing, this may be
sufficient.)

v/ We're no longer wasting big amounts of space.

X k-d trees are not really symmetric with respect to space dimensions.

It's time to bring k-d trees to the disk. The K-D-B-Tree

m uses pages as an organizational unit
(e.g., each node in the K-D-B-tree fills a page) and

m uses a k-d tree-like layout to organize each page.

" John T. Robinson. The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes. SIGMOD 1981.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

K-D-B-Tree Idea

. <¥4T” page O
« ¢——o
o——
[o]
h {e}
page:l :
o
+t+——o
oO—F—:i - o
5 page
A o o
\ \
|

region pages:
m contain entries
(region, pagelD)
m no null pointers
m form a balanced tree

m all regions disjoint
and rectangular

point pages:

B contain entries
(point, rid)
m ~ BT-tree leaf nodes

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

K-D-B-Tree Operations

m Searching a K-D-B-Tree works straightforwardly:

m Within each page determine all regions R; that contain the
query point g (intersect with the query region Q).

m For each of the R;, consult the page it points to and recurse.

m On point pages, fetch and return the corresponding record for
each matching data point p;.

m When inserting data, we keep the K-D-B-Tree balanced, much like
we did in the BT-tree:

m Simply insert a (region, pagelD) ({point, rid)) entry into a
region page (point page) if there's sufficient space.

m Otherwise, split the page.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Splitting a Point Page

Splitting a point page p:

Choose a dimension / and an i-coordinate x; along which to split,
such that the split will result in two pages that are not overfull.
Move data points p with p; < x; and p; > x; to new pages peft and

Pright (respectively).
Replace (region, p) in the parent of p with (left region, pieft)
(right region, pright)-
Step 3 may cause an overflow in p’s parent and, hence, lead to a split of
a region page.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Splitting a Region Page

m Splitting a point page and moving its data points to the resulting
pages is straightforward.

m In case of a region page split, by contrast, some regions may
intersect with both sides of the split (e.g., page 0 on slide 131).

SRl EEE -- split

region crossing the split ™|

m Such regions need to be split, too.

m This can cause a recursive splitting downward (!) the tree.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Example: Page 0 Split in Tree on Slide 131

new root

page 6

page O

page 3

page:7

[page 1 : [Ipage 2

m Root page 0 — pages 0 and 6 (~» creation of new root).

m Region page 1 — pages 1 and 7 (point pages not shown).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

K-D-B-Trees—Discussion

K-D-B-Trees

¢/ are symmetric with respect to all dimensions,?

v/ cluster data in a space-aware and page-oriented fashion,
v/ are dynamic with respect to updates, and

¢/ can answer point queries and region queries.

However,
® we still don't have support for region data and
® K-D-B-Trees (like k-d trees) won't handle deletes dynamically.

This is because we always partitioned the data space such that
m every region is rectangular and

B regions never intersect.

YHowever, split dimensions must be chosen, which re-introduces asymmetry.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

R-trees do not have the disjointness requirement.

m R-tree inner or leaf nodes contain (region, pagelD) or (region, rid)
entries (respectively). region is the minimum bounding rectangle
that spans all data items reachable by the respective pointer.

m Every node contains between d and 2d entries (~ BT-tree).11

m Insertion and deletion algorithms keep an R-tree balanced at all
times.

R-trees allow the storage of point and region data.

/" Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

Hexcept the root node

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

R-Tree: Example

m order: d =2
. I 0
m region data RS,
9 page 0 @)
1 c
p—
Q
c
O =2 E
] =
++4-o :
o o
page 1
page 2 g
J« : J'
%]
: i]
: H page 8 o
[N S S § . E B (@)
: ; i H page 9 [«
: Y
(g8}
o
page 7

R-Tree: Searching and Inserting

While searching an R-tree, we may have to descend into more than one

child node for point and region queries (* range search in point quad
trees, slide 125).

Inserting into an R-tree very much resembles B™-tree insertion:
Choose a leaf node n to insert the new entry.
m Try to minimize the necessary region enlargement(s).

If nis full, split it (resulting in n and n’) and distribute old and new
entries evenly across n and n'.

m Splits may propagate bottom-up and eventually reach the root
(BT -tree).

After the insertion, some regions in the ancestor nodes of n may
need to be adjusted to cover the new entry.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Splitting an R-Tree Node

To split an R-tree node, we have more than one alternative.

_ _ *according
bad split* good split* to Guttman

Heuristic: Minimize the totally covered area.
m Exhaustive search for the best split infeasible.
m Guttman proposes two ways to approximate the search.

m Follow-up papers (e.g., the R*-tree) aim at improving the quality of
node splits.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

R-Tree: Deletes

All R-tree invariants (slide 137) are maintained during deletions.

If an R-tree node n underflows (i.e., less than d entries are left
after a deletion), the whole node is deleted.

Then, all entries that existed in n are re-inserted into the R-tree (as
discussed before).

Note that Step 1 may lead to a recursive deletion of n's parent.

m Deletion, therefore, is a rather expensive task in an R-tree.

e Spacial indexing in mainstream database implementations.

m Indexing in commodity systems is typically based on R-trees.

m Yet, only few systems implement them out of the box (e.g.,
PostgreSQL).

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Bit Interleaving

m We saw earlier that a B™-tree over concatenated fields (a, b)
doesn't help our case, because of the asymmetry between the role
of a and b in the index.

m What happens if we interleave the bits of a and b (hence, make the
BT-tree “more symmetric”)?

a=42 b=17 a=42 b=17
00101010 00010001 00101010 00010001

NN/ N -

0010101000010001 0000100110001001

(a, b) (concatenation) a and b interleaved

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Z-Ordering

(a, b) (concatenated)b a and b interleaved

m Both approaches linearize all coordinates in the value space
according to some order. see also slide 120

m Bit interleaving leads to what is called the Z-order.
m The Z-order (largely) preserves spacial clustering.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

B1_trees Over Z-Codes

m Use a BT-tree to index Z-codes of multi-dimensional data.

m Each leaf in the BT-tree describes an interval in the Z-space.

m Each interval in the Z-space describes a region in the
multi-dimensional data space.

m To retrieve all data points in a query region @, try to touch only
those leave pages that intersect with Q.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

UB-Tree Range Queries

After each page processed, perform an index
re-scan (/") to fetch the next leaf page that
intersects with Q.

1 Function: ub_range (Q)

2 cur + z(Qvottom,left) ;

3 while true do
// search BT-tree page containing cur (,* slide 70)

4 page < search (cur);

5 foreach data point p on page do

6 if pisin Q then

7 | append p to result ;

8 if region in page reaches beyond Qiop, right then

9 L break ;

// compute next Z-address using @ and data on current page
0 cur < get next_z_address (Q, page);

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Example by Volker Markl and Rudolf Bayer, taken from http://n|

UB-Trees—Discussion

m The cost of a region query is linear in the size of the result @Q and
logarithmic with respect to the stored data volume N
(% - O(logy N)).

m UB-trees are fully dynamic, a property inherited from the
underlying B -trees.

m The use of other space-filling curves to linearize the data space is
discussed in the literature, too. E.g., Hilbert curves.

¢4 UB-trees have been commercialized in the Transbase(® database
system.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Spaces with High Dimensionality

For large k, all the techniques we discussed become ineffective:

m E£.g., for k =100, we'd get 2199 ~ 103° partitions per node in a
point quad tree. Even with billions of data points, almost all of
these are empty.

m Consider a really big search region, cube-sized covering 95 % of the
range along each dimension:

data space

query region

For k = 100, the probability of a point being
in this region is still only 0.951%° ~ 0.59 %.

95 %
k—— 100% —

m We experience the curse of dimensionality here.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Page Selectivty for k-NN Search

N=50’000, image database, k=10

140 + Scan iy
3 R*-Tree ——
= 120 + X-Tree -+]
< VA-File =
g 100 P P——— P
3 o -)
o) 80 /" * + -+ . 1
Jd eor S 1
8 40 r # —
> Y
R 20 + 4 + 1

m,.'m/a .
O Lt : O B G

0 5 10 15 20 25 30 35 40 45
Number of dimensions in vectors

Data: Stephen Bloch. What's Wrong with High-Dimensionality Search. VLDB 2008.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Query Performance in High Dimensions

N=50’000, image database, k=10

—

g 100000 ¢ Scan —— 3
= R*-ree —o—-

5 X-treg = et e
I VA-File s o e

& 10000 ¢ —a E
z

z

k]

© L

g 1000

|_

°

D !

2

g 100} :
o i

0 5 10 15 20 25 30 35 4 45
Number of dimensions in vectors

m VA-File: vector approximation file (|VA-File| < |data file|)

m Scan VA-File and use it as a filter for actual disk pages.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

Point Quad Tree
k-dimensional analogy to binary trees; main memory only.

k-d Tree, K-D-B-Tree
k-d tree: partition space one dimension at a time (round-robin);
K-D-B-Tree: B™-tree-like organization with pages as nodes, nodes
use a k-d-like structure internally.

R-Tree
regions within a node may overlap; fully dynamic; for point and
region data.

UB-Tree
use space-filling curve (Z-order) to linearize k-dimensional data,
then use BT -tree.

Curse Of Dimensionality
most indexing structures become ineffective for large k; fall back to
seq. scanning and approximation/compression.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018

	Multi-Dimensional Indexing
	The Problem
	B+-trees…
	… over single columns
	… over composite keys

	Point Quad Trees
	Overview
	Point (Equality) Search
	Inserting Data
	Region Queries
	Discussion

	k-d trees
	Balanced k-d Tree Construction

	K-D-B-Trees
	K-D-B-Tree Operations
	Splitting a Point Page
	Splitting a Region Page
	K-D-B-Trees: Discussion

	R-Trees
	Example
	Searching and Inserting
	Splitting R-Tree Nodes

	UB-Trees
	Bit Interleaving / Z-Ordering
	B+-Trees over Z-Codes
	Range Queries
	UB-Trees: Discussion

	Spaces with High Dimensionality
	Wrap-Up

