
Architecture and Implementation

of Database Systems (Summer 2018)

Jens Teubner, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2018

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 1



Part III

Indexing

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 59



SELECT *

FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8800 AND 8999

How could we prepare for such queries and evaluate them efficiently?

We could

1 sort the table on disk (in ZIPCODE order).

2 To answer queries, then use binary search to find first

qualifying tuple, and scan as long as ZIPCODE < 8999.

4
1
0
4
*

4
1
2
3
*

4
2
2
2
*

4
4
5
0
*

4
5
2
8
*

5
0
1
2
*

6
3
3
0
*

6
4
2
3
*

8
0
5
0
*

8
1
0
5
*

8
1
8
0
*

8
2
4
5
*

8
2
8
0
*

8
4
0
6
*

8
5
7
0
*

8
6
0
0
*

8
6
0
4
*

8
7
0
0
*

8
8
0
8
*

8
8
8
7
*

8
9
1
0
*

8
9
5
3
*

9
0
1
6
*

9
2
0
0
*

9
5
3
2
*

scan

k* denotes the full data record with search key k.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 60



Ordered Files and Binary Search

4
1
0
4
*

4
1
2
3
*

4
2
2
2
*

4
4
5
0
*

4
5
2
8
*

5
0
1
2
*

6
3
3
0
*

6
4
2
3
*

8
0
5
0
*

8
1
0
5
*

8
1
8
0
*

8
2
4
5
*

8
2
8
0
*

8
4
0
6
*

8
5
7
0
*

8
6
0
0
*

8
6
0
4
*

8
7
0
0
*

8
8
0
8
*

8
8
8
7
*

8
9
1
0
*

8
9
5
3
*

9
0
1
6
*

9
2
0
0
*

9
5
3
2
*

scan

page 0 page 1 page 2 page 3 page 4 page 5 page 6 page 7 page 8 page 9 page 10 page 11 page 12

" We get sequential access during the scan phase.

We need to read log2(# tuples) tuples during the search phase.

% We need to read about as many pages for this.

(The whole point of binary search is that we make far, unpredictable

jumps. This largely defeats prefetching.)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 61



Binary Search and Database Pages

Observations:

Make rather far jumps initially.

→ For each step read full page, but inspect only one record.

After O (log2 pagesize), search stays within one page.

→ I/O cost is used much more efficiently here.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 62



Binary Search and Database Pages

Idea: “Cache” those records that might be needed for the first phase.

→ If we can keep the cache in memory, we can find any record with

just a single I/O.

� Is this assumption reasonable?

E.g., 8 kB page size; 50 B records ⇒ (up to) 160 records per page

DBA rule-of-thumb: RAM size & 2–3 % database size
"

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 63



Large Data

What if my data set is really large?

“Cache” will span many pages, too.

(In practice, we’ll organize the cache just like any other database object.)

Thus: “cache the cache” → hierarchical “cache”

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · · · · · · · ·

· · ·

in
n

er
n

o
d

es

leave nodes (here: data pages)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 64



ISAM—Indexed Sequential Access Method

Idea: Accelerate the search phase using an index.

4
1
0
4
*

4
1
2
3
*

4
2
2
2
*

4
4
5
0
*

4
5
2
8
*

5
0
1
2
*

6
3
3
0
*

6
4
2
3
*

8
0
5
0
*

8
1
0
5
*

8
1
8
0
*

8
2
4
5
*

8
2
8
0
*

8
4
0
6
*

8
5
7
0
*

8
6
0
0
*

8
6
0
4
*

8
7
0
0
*

8
8
0
8
*

8
8
8
7
*

8
9
1
0
*

8
9
5
3
*

9
0
1
6
*

9
2
0
0
*

9
5
3
2
*

4
2
2
2

4
5
2
8

6
3
3
0

8
0
5
0

8
2
8
0

8
5
7
0

8
6
0
4

8
8
0
8

9
0
1
6

9
5
3
2

8
1
8
0

8
9
1
0

• • • • • • • • • • • • •

• • •

in
d

ex
p

a
g

es
d

a
ta

p
a

g
es

All nodes are the size of a page

→ hundreds of entries per page

→ large fanout, low depth

Search effort: logfanout(# tuples)

p0 k1 p1 k2 p2 · · · kn pn
• • • •

index entry separator key

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 65



ISAM Index: Updates

ISAM indexes are inherently static.

Deletion is not a problem: delete record from data page.

Inserting data can cause more effort:

If space is left on respective leaf page, insert record there (e.g.,

after a preceding deletion).

Otherwise, overflow pages need to be added.

(Note that these will violate the sequential order.)

ISAM indexes degrade after some time.

· · · · · · · · · · · ·
· · · · · ·

· · ·

overflow pages

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 66



Remarks

Leaving some free space during index creation reduces the insertion

problem (typically ≈ 20% free space).

Since ISAM indexes are static, pages need not be locked (database

jargon: “latched”) during index access.

Latching can be a serious bottleneck in dynamic tree indexes

(particularly near the root node).

ISAM may be the index of choice for relatively static data.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 67



B+-trees: A Dynamic Index Structure

The B+-tree is derived from the ISAM index, but is fully dynamic with

respect to updates.

No overflow chains; B+-trees remain balanced at all times

Gracefully adjusts to inserts and deletes.

Minimum occupancy for all B+-tree nodes (except the root):

50 % (typically: 67 %).

Original version: B-tree: R. Bayer and E. M. McCreight.

Organization and Maintenance of Large Ordered Indexes. Acta

Informatica, vol. 1, no. 3, September 1972.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 68



B+-trees: Basics

B+-trees look like ISAM indexes, where

leaf nodes are, generally, not in sequential order on disk,

leaves are connected to form a double-linked list:2

. . . . . . . . .

. . .

leaves may contain actual data (like the ISAM index)

or just references to data pages (e.g., rids). ↗ slides 80 and 86

We assume the latter case in the following, since it is the more

common one.

each B+-tree node contains between d and 2d entries (d is the

order of the B+-tree; the root is the only exception)

2This is not really a B+-tree requirement, but some systems implement it.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 69



Searching a B+-tree

1 Function: search (k)

2 return tree search (k, root);

1 Function: tree search (k, node)

2 if node is a leaf then

3 return node;

4 switch k do

5 case k < k1 do

6 return

tree search (k, p0);

7 case ki ≤ k < ki+1 do

8 return

tree search (k, pi);

9 case k2d ≤ k do

10 return

tree search (k, p2d);

Function search (k) returns

a pointer to the leaf node

that contains potential hits

for search key k .

p0 k1 p1 k2 p2 · · · k2dp2d
• • • •

index entry separator key

node page layout

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 70



Insert: Overview

The B+-tree needs to remain balanced after every update.3

→ We cannot create overflow pages.

Sketch of the insertion procedure for entry 〈k , p〉
(key value k pointing to data page p):

1 Find leaf page n where we would expect the entry for k .

2 If n has enough space to hold the new entry (i.e., at most

2d − 1 entries in n), simply insert 〈k , p〉 into n.

3 Otherwise node n must be split into n and n′ and a new

separator has to be inserted into the parent of n.

Splitting happens recursively and may eventually lead to a split

of the root node (increasing the tree height).

3I.e., every root-to-leaf path must have the same length.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 71



Insert: Examples (Insert without Split)

4
1
2
3

4
2
2
2

4
4
5
0

4
5
2
8

5
0
1
2

6
4
2
3

8
0
5
0

8
1
0
5

8
2
8
0

8
4
0
4

8
5
0
0

8
5
7
0

8
6
0
4

8
7
0
0

8
8
0
8

8
8
8
7

9
0
1
6

9
2
0
0

5
0
1
2

8
2
8
0

8
7
0
0

9
0
1
6

8
5
0
0

node 3 node 4 node 5 node 6 node 7 node 8

node 1 node 2

node 0

· · · pointers to data pages · · ·

Insert new entry with key 4222.

→ Enough space in node 3, simply insert.

→ Keep entries sorted within nodes.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 72



Insert: Examples (Insert with Leaf Split)
4
1
2
3

4
2
2
2

4
4
5
0

4
5
2
8

5
0
1
2

6
3
3
0

6
4
2
3

8
0
5
0

8
1
0
5

8
2
8
0

8
4
0
4

8
5
0
0

8
5
7
0

8
6
0
4

8
7
0
0

8
8
0
8

8
8
8
7

9
0
1
6

9
2
0
0

5
0
1
2

6
4
2
3

8
2
8
0

8
7
0
0

9
0
1
6

8
5
0
0

node 3 node 4 node 5 node 6 node 7 node 8

node 1 node 2

node 0

node 9

Insert key 6330.

→ Must split node 4.

→ New separator goes into node 1

(including pointer to new page). 5
0
1
2

6
3
3
0

node 4

6
4
2
3

8
0
5
0

8
1
0
5

new node 9

6
4
2
3new separator

new entry

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 73



Insert: Examples (Insert with Inner Node Split)
4
1
0
4

4
1
2
3

4
2
2
2

4
4
5
0

4
5
2
8

5
0
1
2

6
3
3
0

6
4
2
3

8
0
5
0

8
1
0
5

8
1
8
0

8
2
4
5

8
2
8
0

8
4
0
4

8
5
0
0

8
5
7
0

8
6
0
4

8
7
0
0

8
8
0
8

8
8
8
7

9
0
1
6

9
2
0
0

4
2
2
2

5
0
1
2

8
1
0
5

8
2
8
0

8
7
0
0

9
0
1
6

6
4
2
3

8
5
0
0

node 3 node 4 node 5 node 6 node 7 node 8

node 1 node 2

node 0

node 9 node 10node 11

node 12

After 8180, 8245, insert key 4104.

→ Must split node 3.

→ Node 1 overflows → split it

→ New separator goes into root

Unlike during leaf split, separator key does

not remain in inner node. � Why?
4
2
2
2

5
0
1
2

node 1

8
1
0
5

8
2
8
0

new node 12

6
4
2
3new separator

from leaf split

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 74



Insert: Root Node Split

Splitting starts at the leaf level and continues upward as long as

index nodes are fully occupied.

Eventually, this can lead to a split of the root node:

Split like any other inner node.

Use the separator to create a new root.

The root node is the only node that may have an occupancy of less

than 50 %.

This is the only situation where the tree height increases.

� How often do you expect a root split to happen?

E.g., B+-tree over 8 byte integers, 4 KB pages;

pointers encoded as 8 byte integers.

128–256 index entries per page.

An index of height h indexes at least 128h

records, typically more.

h # records

2 16,000

3 2,000,000

4 250,000,000

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 75



Insertion Algorithm

1 Function: tree insert (k, rid, node)

2 if node is a leaf then

3 return leaf insert (k, rid, node);

4 else

5 switch k do

6 case k < k1 do

7 〈sep, ptr〉 ← tree insert (k, rid, p0);

8 case ki ≤ k < ki+1 do

9 〈sep, ptr〉 ← tree insert (k, rid, pi);

10 case k2d ≤ k do

11 〈sep, ptr〉 ← tree insert (k, rid, p2d);

12 if sep is null then

13 return 〈null, null〉;

14 else

15 return split (sep, ptr, node);

see tree search ()

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 76



1 Function: leaf insert (k, rid, node)

2 if another entry fits into node then

3 insert 〈k, rid〉 into node ;

4 return 〈null, null〉;

5 else

6 allocate new leaf page p ;

7 take
{
〈k+
1 , p

+
1 〉, . . . , 〈k+

2d+1, p
+
2d+1〉

}
:= entries from node ∪ {〈k, ptr〉}

8 leave entries 〈k+
1 , p

+
1 〉, . . . , 〈k+

d , p
+
d 〉 in node ;

9 move entries 〈k+
d+1, p

+
d+1〉, . . . , 〈k

+
2d+1, p

+
2d+1〉 to p ;

10 return 〈k+
d+1, p〉;

1 Function: split (k, ptr, node)

2 if another entry fits into node then

3 insert 〈k, ptr〉 into node ;

4 return 〈null, null〉;

5 else

6 allocate new leaf page p ;

7 take
{
〈k+
1 , p

+
1 〉, . . . , 〈k+

2d+1, p
+
2d+1〉

}
:= entries from node ∪ {〈k, ptr〉}

8 leave entries 〈k+
1 , p

+
1 〉, . . . , 〈k+

d , p
+
d 〉 in node ;

9 move entries 〈k+
d+2, p

+
d+2〉, . . . , 〈k

+
2d+1, p

+
2d+1〉 to p ;

10 set p0 ← p+
d+1 in node;

11 return 〈k+
d+1, p〉;



Insertion Algorithm

1 Function: insert (k, rid)

2 〈key , ptr〉 ← tree insert (k, rid, root);

3 if key is not null then

4 allocate new root page r ;

5 populate r with

6 p0 ← root;

7 k1 ← key ;

8 p1 ← ptr ;

9 root ← r ;

insert (k, rid) is called from outside.

Note how leaf node entries point to rids, while inner nodes contain

pointers to other B+-tree nodes.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 78



Index Pages

B-trees use slotted pages, too.

Inner Nodes:

record ≡ 〈key , childPage〉 pairs.

Additional key value to hold extra child pointer

e.g., key value from reference in parent

“dummy key” for far-left or far-right end

Similar to leaves, 〈key , childPage-list 〉 might make sense, too.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 79



Index Pages

Leaf Nodes: Three options:

1 Store full data records in B-tree leaf

→ B-tree becomes a method to physically organize the table’s

data pages.

→ “clustered index” or “index-organized table”

2 record ≡ 〈key , rid-list 〉
→ There could be more than one tuple for same key.

3 record ≡ 〈key , rid〉
→ Easier when keys are unique. �Why?

Options 2 and 3 are reasons why we want record ids to be stable.

→ slides 51 ff.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 80



Index Pages —I IBM DB2

E.g., index on VARCHAR field with random content:

Hi Key 0:

Offset Location = 668 (x29C)

Record Length = 455 (x1C7)

Key Part 1:

Variable Length Character String

Actual Length = 0

Child Pointer => Page 24694

Table RID: x(0000 03C6 0027) r(000003C6;0027) d(966;39)

Child Pointer => Page 24695

Table RID: x(0000 0514 0018) r(00000514;0018) d(1300;24)

...

Hi Key 1:

Offset Location = 1123 (x463)

Record Length = 31 (x1F)

Key Part 1:

Variable Length Character String

Actual Length = 16

2B2B357A 5169792F 31307556 73513D3D ++5zQiy/10uVsQ==

Child Pointer => Page 24739

Table RID: x(FFFF FFFF FFFF) r(FFFFFFFF;FFFF) d(4294967295;65535)

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 81



Slotted Pages for Data and Indexes

Data Pages:

Move record without changing its slot/RID.

Index Pages:

Also: change slots without moving data.

� Huh?

Slot address in index need not be stable (only RIDs have to be).

Keeps slots (i.e., the slot directory) sorted by key values.

→ Do binary search within a B-tree node.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 82



B+-trees and Sorting

A typical situation according to alternative 2 looks like this:

. . . . . . . . .

. . .

. . .

index file

data file

� What are the implications when we want to execute

SELECT * FROM CUSTOMERS ORDER BY ZIPCODE ?

“Random” access to data pages when we scan the B+-tree.

Page I/Os needed: ≈ number of tuples in CUSTOMERS.

For comparison: Using external sorting, we could sort the entire file

with 3–5 sequential file reads.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 83



Clustered B+-trees

If the data file was sorted, the scenario would look different:

. . . . . . . . .

. . .

. . .

index file

data file

We call such an index a clustered index.

Scanning the index now leads to sequential access.

This is particularly good for range queries.

� Why don’t we make all indexes clustered?

You can only sort a table according to one criterion! In addition, main-

taining a clustered index involves additional work.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 84



I Indexes and Clustering in IBM DB2

DB2 does not offer clustered indexes in the sense discussed here.

But:

Can declare one “clustering index” per table.

CREATE INDEX IndexName

ON TableName ( col1, col2, . . . , coln ) CLUSTER

DB2 will attempt (!) to cluster the table’s data pages according to

the key of the index.

Table re-organization will re-establish clustering if necessary.

Use ALTER TABLE and PCTFREE to ease future inserts.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 85



Index Organized Tables

Alternative 1 (slide 80) is a special case of a clustered index.

index file ≡ data file

Such a file is often called an index organized table.

I E.g., Oracle8i

CREATE TABLE (...

...,

PRIMARY KEY ( ... ))

ORGANIZATION INDEX;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 86



Indexes on Tables

Option A: Heap file for data, indexes with RIDs

data pages

(heap file)

Page n

...

Page 3

Page 2

Page 1

index on k

(non-clustered)

〈4
,7
〉

〈9
,2
〉

〈2
,6
〉

〈1
7
,3
〉

. . .

〈1
3
,9
〉

〈7
,4
〉 RIDs in

leaf nodes

→ Can have arbitrarily many indexes of this kind.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 87



Indexes on Tables

Option B: Data sits in clustered index

unique index on k

(clustered; contains data)

〈k
1
,t
1
〉

〈k
2
,t
2
〉

〈k
3
,t
3
〉

〈k
4
,t
4
〉

. . .

〈k
n
,t
n
〉

secondary index on a

(non-clustered)

〈k
7
〉

〈k
1
2
〉

〈k
3
〉

〈k
9
〉

. . .

〈k
1
5
〉

〈k
2
〉

key references
in leaf nodes

Secondary indexes use key values to reference tuples.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 88



Indexes on Tables

� What about this setup?

unique index on k

(clustered; contains data)

〈k
1
,t
1
〉

〈k
2
,t
2
〉

〈k
3
,t
3
〉

〈k
4
,t
4
〉

. . .
〈k
n
,t
n
〉

secondary index on a

(non-clustered)

〈4
,7
〉

〈9
,2
〉

〈2
,6
〉

〈1
7
,3
〉

. . .

〈1
3
,9
〉

〈7
,4
〉

RIDs in leaf nodes

Clustered index makes page numbers non-stable.

Split in the primary index → update of secondary index.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 89



Prefix Truncation

Address book of Berlin, anno 1858:4

4http://adressbuch.zlb.de/
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 90

http://adressbuch.zlb.de/


Prefix Truncation

Address book:

To save space, common last names are printed only once.

Such prefix truncation can also be applied to B-trees:5

Prefix: Smith, J

a
c
k

a
n
e

a
s
o
n

e
r
e
m
y

i
l
l

o
h
n

u
n
e

. . .

The advantage is two-fold:

1 save space → more keys fit on one page → higher fanout

2 need fewer comparisons

5R. Bayer and K. Unterauer. Prefix B-Trees. TODS 2(1), March 1972.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 91



Suffix Truncation

Prefix truncation is most effective near or in leaf pages. �Why?

Elsewhere, by contrast, the leading key parts are most discriminative.

In fact, a key’s suffix might not be needed to guide navigation at all.

This motivates suffix truncation:

Store keys only as far as needed to guide search.

Remember: key values in inner tree nodes do not have to be

contained in the actual data set.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 92



Suffix Truncation

Example:

D
a
n
i
e
l

D
a
v
i
d

J
a
s
o
n

J
e
n
n
i
f
e
r

J
o
h
n

M
a
r
c

M
i
c
h
a
e
l

O
l
i
v
e
r

P
a
u
l

P
e
t
e
r

R
a
c
h
e
l

R
o
b
e
r
t

R
o
n

S
t
e
v
e

T
h
o
m
a
s

J
e
//
//
//
//

n
n
i
f
e
r

O/
//
//
//
/

l
i
v
e
r

P
e
//
//

t
e
r

S/
//
//
/

t
e
v
e

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 93



Suffix Truncation

� Suffix truncation beyond the bottom-most level is

difficult/dangerous.

D
a
n
i
e
l

D
a
v
i
d

J
a
s
o
n

J
e
n
n
i
f
e
r

J
o
h
n

M
a
r
c

M
i
c
h
a
e
l

O
l
i
v
e
r

P
a
u
l

P
e
t
e
r

R
a
c
h
e
l

R
o
b
e
r
t

R
o
n

R
u
d
o
l
p
h

S
t
e
v
e

T
h
o
m
a
s

J
e
O R
o

S

P
e

→ Shortening ‘Pe’ to ‘P’ would be incorrect!

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 94



“Poor Man’s Normalized Keys”

The effect of discriminative prefixes can also exploited as follows:

Store a fixed-length prefix as an additional field in every entry of

the slot directory.

Need to follow the pointer only if the prefix is not enough to decide

on the comparison outcome.

page header nnifer iver ter eve

JeOlPeSt

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 95



“Poor Man’s Normalized Keys”

Most accesses are to an array of fixed-length elements

(Pointer chasing in memory is relatively expensive on modern

hardware.)

Can use, e.g., integer comparisons to evaluate four-byte prefix

comparisons.
�

May need to re-order bytes for this.

CPU cache efficient: When a slot entry is read, likely the prefix is

in the same cache line.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 96



Key Normalization

In practice, key comparisons are not as simple as they look on slides:

language-specific collation

representations as different character sets

NULL values

Plus, keys might be composed of multiple columns.

Thus:

Normalize keys and represent any key as a bit string.

→ All of the above issues only affect normalization,

but not B-tree operations themselves.

Can prepare, e.g., for integer (rather than bit or byte) comparisons.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 97



Key Normalization

Examples:

Map upper and lower case letters to same bit string if collation is

case insensitive.

Use bit representations for characters according to collation

E.g., ö < z in German; z < ö in Swedish.

To sort NULL before any value: Prepend any valid value with a ‘1’

bit and represent NULL as a ‘0’ bit.

A B C normalized key

2 ‘Smith’ ‘John’ 1 00· · · 00000010 1 Smith‘\0’ 1 John‘\0’

3 ‘Miller’ ‘’ 1 00· · · 00000011 1 Miller‘\0’ 1 ‘\0’

64 – ‘Dave’ 1 00· · · 00100000 0 1 Dave‘\0’

– ‘’ – 0 1 ‘\0’0

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 98



Key Normalization

� Information might get lost during normalization

(e.g., capitalization)

→ Store normalized and original key (redundantly) in leaf nodes or

→ Use normalization only in inner nodes

Keys tend to become larger due to normalization.

→ Order-preserving compression might be useful.

Key normalization and prefix/suffix truncation go particularly well

together.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 99



Deletion

If a node is sufficiently full (i.e., contains at least d + 1 entries, we

may simply remove the entry from the node.

Note: Afterward, inner nodes may contain keys that no longer

exist in the database. This is perfectly legal.

Merge nodes in case of an underflow (“undo a split”):

4
2
2
2

5
0
1
2

8
1
0
5

8
2
8
0

3
4
6
0

6
4
2
3

8
5
0
0

4
2
2
2

5
0
1
2

6
4
2
3

8
2
8
0

3
4
6
0

8
5
0
0

merge

(inner nodes)

“Pull” separator into merged node.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 100



Deletion

�
It’s not quite that easy. . .

4
2
2
2

5
0
1
2

5
8
2
3

8
1
0
5

8
2
8
0

3
4
6
0

6
4
2
3

8
5
0
0

4
2
2
2

5
0
1
2

6
4
2
3

8
2
8
0

3
4
6
0

5
8
2
3

8
5
0
0

?

redistribution

Merging only works if two neighboring nodes were 50 % full.

Otherwise, we have to re-distribute:

“rotate” entry through parent

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 101



I B+-trees in Real Systems

Actual systems often avoid the cost of merging and/or

redistribution, but relax the minimum occupancy rule.

To improve concurrency, systems sometimes only mark index

entries as deleted and physically remove them later (e.g., IBM DB2

UDB “type-2 indexes”)

→ “Ghost bits” / “ghost records”

→ Often kept around for a while → re-use on next insert.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 102



Ghost Records —I IBM DB2

Before key deletion:

Key 64:

Offset Location = 3710 (xE7E)
Record Length = 40 (x28)

Key Part 1:
Variable Length Character String
Actual Length = 28

44516A6B 7A334650 76724471 534B7767 DQjkz3FPvrDqSKwg
58432B59 345A7837 4852383D XC+Y4Zx7HR8=

Table RID: x(0000 1237 0001) r(00001237;0001) d(4663;1) ridFlags=x0

After key deletion:

Key 64:

Offset Location = 3710 (xE7E)
Record Length = 40 (x28)

Key Part 1:
Variable Length Character String
Actual Length = 28

44516A6B 7A334650 76724471 534B7767 DQjkz3FPvrDqSKwg
58432B59 345A7837 4852383D XC+Y4Zx7HR8=

Table RID: x(0000 1237 0001) r(00001237;0001) d(4663;1) ridFlags=x3 Punc Deleted

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 103



Key Deletion —I IBM DB2

In IBM DB2, redistribution and merging are only applied if

the page is a leaf node and

(Remember the pointers between adjacent leaf nodes, ↗ slide 69.)

the fill degree of the page falls below MINPCTUSED and

(That also means that MINPCTUSED must have a value greater than

its default, which is 0.)

the transaction holds an exclusive lock on the table.

This is called online index defragmentation in DB2.

Otherwise, “clean-up” only happens during explicit index maintenance.

Use REORG INDEX to trigger maintenance.

Use REORGCHK to check whether index(es) need maintenance.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 104



Ghost Records

Ghost records turn out to be useful for a number of purposes.

E.g., fence keys

Keep a copy of parent’s separator keys in every node

Fence keys span range of possible key values in this node

→ Avoids problems with prefix truncation.

One key is an exclusive bound, thus must be a ghost record.

The other one may or may not be a ghost record.

Can be used, e.g., to check integrity of B-tree.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 105



Variable-Length Keys

With variable-length keys, the original B-tree property

d ≤ number of keys in a node ≤ 2d

is not practical any more.

→ Real-world systems do not really care about this “50 % rule.”

With truncation, the storage space for a key might even change during

re-organizations.

� Will this cause any trouble during updates?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 106



Composite Keys

B+-trees can (in theory6) be used to index everything with a defined

total order, e.g.:

integers, strings, dates, . . . , and

concatenations thereof (based on lexicographical order).

E.g., in most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME);

A useful application are, e.g., partitioned B-trees:

Leading index attributes effectively partition the resulting B+-tree.

↗ G. Graefe: Sorting And Indexing With Partitioned B-Trees. CIDR 2003.

6Some implementations won’t allow you to index, e.g., large character fields.
© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 107



Partitioned B-trees

CREATE INDEX ON TABLE STUDENTS (SEMESTER, ZIPCODE);

� What types of queries could this index support?

The resulting B+-tree is going to look like this:

· · ·
SEMESTER = 1 SEMESTER = 2 SEMESTER = n

It can efficiently answer queries with, e.g.,

equality predicates on SEMESTER and ZIPCODE,

equality on SEMESTER and range predicate on ZIPCODE, or

a range predicate on SEMESTER only.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 108



Bulk-Loading B+-trees

Building a B+-tree is particularly easy when the input is sorted.

. . .

. . .

. . .

Build B+-tree bottom-up and left-to-right.

Create a parent for every 2d + 1 unparented nodes.

(Actual implementations typically leave some space for future updates.

↗ e.g., DB2’s PCTFREE parameter)

� What use cases could you think of for bulk-loading?

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 109



Stars, Pluses, . . .

In the foregoing we described the B+-tree.

Bayer and McCreight originally proposed the B-tree:

Inner nodes contain data entries, too. � Pros/cons?

There is also a B*-tree:

Keep non-root nodes at least 2/3 full (instead of 1/2).

Need to redistribute on inserts to achieve this.

(Whenever two nodes are full, split them into three.)

Most people say “B-tree” and mean any of these variations. Real

systems typically implement B+-trees.

“B-trees” are also used outside the database domain, e.g., in modern file

systems (ReiserFS, HFS, NTFS, . . . ).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 110



Hash-Based Indexing

B+-trees are by far the predominant type of indices in databases. An

alternative is hash-based indexing.

h

bucket 0

bucket 1

...

bucket n − 1

key
. . .•

•

•

primary
bucket pages

overflow
pages

h : dom(key)→ [0 .. n − 1]

Hash indices can only be used to answer equality predicates.

Particularly good for strings (even for very long ones).

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 111



Dynamic Hashing

Problem: How do we choose n (the number of buckets)?

n too large → space wasted, poor space locality

n too small → many overflow pages, degrades to linked list

Database systems, therefore, use dynamic hashing techniques:

extendible hashing,

linear hashing.

I Few systems support true hash indices (e.g., PostgreSQL).

More popular uses of hashing are:

support for B+-trees over hash values (e.g., SQL Server)

the use of hashing during query processing → hash join.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 112



Recap

Indexed Sequential Access Method (ISAM)

A static, tree-based index structure.

B+-trees

The database index structure; indexing based on any kind of (linear)

order; adapts dynamically to inserts and deletes; low tree heights

(∼ 3–4) guarantee fast lookups.

Clustered vs. Unclustered Indices

An index is clustered if its underlying data pages are ordered

according to the index; fast sequential access for clustered

B+-trees.

Hash-Based Indices

Extendible hashing and linear hashing adapt dynamically to the

number of data entries.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 113


	Indexing
	ISAM—Indexed Sequential Access Method
	Overflow Pages

	B+-trees: A Dynamic Index Structure
	Searching a B+-Tree
	Inserting Data
	What's Stored Inside the Leaves?
	Clustered Indexes
	More on B+-trees
	Deletion

	Hash-Based Indexing
	Recap


