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Part X

Distributed Databases
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Distributed Databases

Parallel databases assume tight coupling between nodes.
— e.g., local cluster

— main goal: parallel execution

Distributed databases have a slightly
different motivation.

m geographically separate locations
m sites run full DBMS

m locality effects
]

run local queries independently,
but still allow for global queries

SNIHOVW 3svaviva T

— e.g., for analytics
m increase availability / failure tolerance
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Transparent Distribution

Want to keep distribution transparent:

m Distributed Data Independence

— Clients need not know how data is distributed or where objects
are located.
— Automatic optimizer decides on distributed query plans.

m Distributed Transaction Atomicity
— Transactions across sites should be atomic.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018



Storing Data in a Distributed DBMS

Fragmentation:
m Break data into fragments and store them on sites.
— Exploit knowledge about data and access pattern

Replication:
m Place data/fragments on multiple sites

— increased availability
— faster query evaluation

Both are trade-offs:

m achievable parallelism; communication cost; synchronization;
available space; failure tolerance
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Horizontal Fragmentation

Each fragment consists of a subset of rows of the original relation.

(] Tite | Office | Budget JRRI L Lte ) Office JBudact
1 Aquarius London 16000 2| g Par!s 20
5 Eridanus Paris 51000 — 3 Centaurus Paris 17000

3 Centaurus Paris 17000 4 Andromeda Rome 29000
4 Andromeda Rome 29000 1 Aquarius London 16000
5 Pegasus London 23000 5 Pegasus London 23000

Express each fragment as a selection on the input relation.
B Projects; = 00office—'paris' ( Projects)
m Projects; = 00office='Rome’ (Projects)
m Projectss = 00ffice="London’ ( Projects)
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Correctness Rules

Completeness:
m Each item in R can be found in (at least) one fragment R;.

Reconstruction:
m |t must be possible to re-construct R from the R;.
— "It must be possible to define a relational operator V

such that R=V (Ry, ..., Ry).”
Disjointness:

m Fragments do not overlap; i.e., no data item is assigned to multiple
fragments.
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Horizontal Fragmentation

Horizontal fragmentation is defined by predicates p;:

Ri = UPI(R) .

How do we find predicates p; such that the fragmentation is
m correct

m well-suited for the given application and data set?

Observation: Breaking a relation (fragment) into a pair of fragments
ensures correctness:

R ~ Ri=0p(R) ;i Ro=0,(R) .
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Horizontal Fragmentation

Idea: Derive p; from workload information.

Step 1: Analyze workload

m Qualitative Information: Predicates used in queries
— Extract simple predicates of the form

sj = attribute 6 constant

where 6 € {=, <, #,<,>, >}
— Observe that simple predicates are easy to negate.

— We refer to a conjunction of (negated) simple predicates as a
minterm.

m Quantitative Information:
— minterm selectivity
— access frequency (of a minterm or a query)
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Queries:

Q1:

SELECT Title
FROM Projects
WHERE Office = ‘Paris’

Qo:

SELECT Office
FROM Projects
WHERE Budget BETWEEN
15000 AND 20000

Simple Predicates:
m s; = Office = ‘Paris’
m s, = Budget > 15000
m s3 = Budget < 20000
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Horizontal Fragmentation: Enumerate Minterms

Step 2: Enumerate Possible Minterms

m Build all possible minterms with given simple predicates and their

negation.
Example:

my = Office = 'Paris’
my = Office # 'Paris’
mz = Office = 'Paris’
mg = Office # ‘Paris’
ms = Office = 'Paris’
me = Office # ‘Paris’
my = Office = 'Paris’
mg = Office # 'Paris’

>>>> > > > >

Budget > 15000
Budget > 15000
Budget < 15000
Budget < 15000
Budget > 15000
Budget > 15000
Budget < 15000
Budget < 15000
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Budget < 20000
Budget < 20000
Budget < 20000
Budget < 20000
Budget > 20000
Budget > 20000
Budget > 20000
Budget > 20000



Horizontal Fragmentation: Prune Minterms

Step 3: Prune Set of Minterms

m Some constructed minterms may be unsatisfiable.

m Others can be simplified, because predicates imply one another.

Example:
my = Office = ‘Paris’ A Budget > 15000 A Budget < 20000
my> = Office # ‘Paris’ A Budget > 15000 A Budget < 20000
ms = Office = ‘Paris’ A Budget < 15000 A—Budget—<20000-
mg = Office # ‘Paris’ N Budget < 15000 A—Budget—<-20000-
ms = Office = ‘Paris’ A—Budget=>15000- A Budget > 20000
me = Office # ‘Paris’ A—Budget>15000- A Budget > 20000
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Horizontal Fragmentation: Relevant Minterms

Step 4: Remove “Irrelevant” Predicates

m Enumeration leads to a large number of minterms (~ fragments).
— Each simple predicate breaks all fragments into two halves.

m Some simple predicates may not be a meaningful sub-fragmentation
for all fragments.
— E.g., a predicate might occur in the workload only in
combination with another predicate.

m Thus: If two minterms m; = m A p and m; = m A —p are always

accessed together (p is not relevant), drop p and replace m; and m;
by just m.

(See Oszu and Valduriez; Principles of Distributed Database Systems; Springer
2011 for more details.)
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Minterms — Fragments

Step 5: Define Fragments

Steps 1-4 resulted in a set of minterms (here: minterms m;—mg).

— Each of these minterms defines one fragment.

R déf Om, (R)

— Here: 6 fragments?*

Note:

m We're still left with an allocation strategy to place fragments on
(network) nodes.

24Some of these fragments may be empty for a given database instance. They are,
nevertheless, fragments.
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Derived Horizontal Fragmentation

Suppose we partitioned relation

. |
Projects honizontally pid| _Title | Office |Budget]
— To facilitate joins, it makes sense 2 Eridanus Paris 21000
to co-locate tuples of Projects 3 Centaurus Paris 17000

and.Emp/oyees. _ 4 Andromeda Rome 29000
— Define fragmentation of

Employees based on 1 Aquarius London 16000
fragmentation of Projects. 5 Pegasus London 23000

Derived horizontal fragmentation:
Employeesp,is def Employees x Projectspa,is

— To compute the join, it is now enough to consider only
“corresponding” fragments.
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Derived Horizontal Fragmentation

The correctness of primary horizontal fragmentations was easy to prove.
The correctness of derived horizontal fragmentations is less simple:

m Completeness:
— Employees that do not belong to any project will disappear.
— Completeness holds, however, when referential integrity is
guaranteed.
m Reconstruction:
— The original relation can be re-constructed from a complete
horizontal fragmentation using the union operator U.
m Disjointness:
— Semijoin operator X does not prevent overlaps per se.
— Together with integrity constraints, disjointness may still be
easy to show.
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Vertical Fragmentation

Sometimes, it is more meaningful to split tables vertically:

(6| Name [Proj] Satary [l e | Name | Proj [l eid | Safary

628 J.Smith 1 58000 628 J.Smith 1 628 58000
262 D. Miller 4 184000 _ 262 D. Miller 4 262 184000
381 P.Hanks 1 52000 ~ 381 P.Hanks 1 381 52000
725 D. Clark 3 55000 725 D.Clark 3 725 55000
4 4
2 2

395 P. Jones 143000 395 P. Jones 395 143000
738 S. Miles 38000 738 S. Miles 738 38000

— Keep key column in both fragments, so original relation can be
re-assembled by means of a join.

— Strictly speaking, vertical fragmentation always leads to
non-disjointness.
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Vertical Fragmentation

Finding a vertical fragmentation scheme is inherently more complex.
m “Only” 2" minterms for n simple predicates.

m But B(m) partitions for m non-key columns.?®

Heuristics:
Group Create one fragment for each (non-key) column, then
iteratively merge fragments.

Split Start with one relation and repeatedly partition it.

Input:
m Information about attribute affinity. Given two attributes A; and
Aj, how frequently are they accessed together in the workload?

*B(m) is the mth Bell number; B(10) ~ 115000; B(15) ~ 10°.
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Hybrid Fragmentation

Horizontal and vertical fragmentation can be combined (arbitrarily).

E.g.,

Employees;;
(cid | Name | Proj

Employees,

628 J. Smith 1 E
738 S. Miles 2 628 58000
381 P. Hanks 1 738 38000

1 52000
725 55000

725 D. Clark 3 395 143000
395 P. Jones 4 262 184000
262 D. Miller 4

— Re-construct using a combination of joins and unions.
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Allocation

Next Step: Allocate fragments to nodes.

Allocation
Non-Redundant Redundant

N

Full Replication Partial Replication
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Replication

Replication is a two-edged sword:

no partial full
replication replication replication

query processing hard hard easy
reliability low high high
storage demand low moderate high
parallel query potential moderate high high
parallel update potential high moderate low
concurrency control easy hard moderate
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Allocation — Criteria

Minimize Response Time
m L ocal data availability avoids communication delays.
m But updates might suffer from too much replication.
Maximize Availability
m Use redundancy to avoid down times.
Minimize Storage and Communication Cost

m For reads, replication may reduce communication; for writes it is the
other way round.

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018



Heuristic 1: “Non-Redundant Best Fit”" Method

Rationale: What is the best node for each fragment?
Analyze workload: Which fragments are accessed by queries issued
at which node?
— Local placement benefits a query.
Place each fragment such that its total benefit is largest.
— Break ties by allocating on the least loaded node.
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Example: “Non-Redundant Best Fit"

accessed number
fragment from node of accesses
Ry Hq 12
H> 2
R Hs 27
R Hq 12
Ho 12

— Place fragment R; on node H;.
— Place fragment R> on node Hs.
— Place fragment R5; on node H, (H; already holds Ry).
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“Non-Redundant Best Fit"

Pros:
m Easy to compute
Cons:
m Only considers benefits, but ignores costs

m Cannot support replication
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Heuristic 2: “All Beneficial Nodes” Method

Rationale: Improve availability by allowing replication.

Placing a fragment R; on a node H, causes. ..
...a benefit:
m Improved response time for every query at H; that references R;.

...a cost:

m Effort to update the replica in case of writes.

Allocation strategy:

Compute, for all R;j/H; combinations, the effective cost (cost minus
benefit) of allocating R; at H;.

Place a fragment R; on node H; whenever benefit exceeds cost.
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“All Beneficial Nodes” Method

Pros:
m Still simple
Cons:

m Network topology not considered (only local <+ remote)
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Heuristic 3: “Progressive Fragment Allocation”

Rationale: Build on “All Beneficial Nodes”, but consider influence of
allocation decisions on one another.

Strategy:

m Place one copy of each fragment so benefit/cost is maximised.

m Continue placing replicas one-by-one, always considering the existing
fragment allocations.

— Stop when additional placement provides no more benefit.
Properties:

m Progressive Fragment Allocation considers the most relevant cost
aspects at a reasonable algorithm complexity.
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Query Processing over Fragmented Data

Consider an example:

SELECT p. Title
FROM Employees AS e, Projects AS p
WHERE e.Proj = p.pid
AND e.Salary > 100000

Let us assume

m Projects was fragmented horizontally, so project-relevant data can
be stored local to the project;

m a derived horizontal fragmentation was used to co-locate
employees with their projects.

What is a good way to execute the above join?
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Re-Construct, Then Execute

Idea: Re-Construct global relations, then evaluate query:

T Title

O Salary>100k

l>4proj:pid
TN N
EmpParis EmpRome EmpLondon 'DrOJParis PrOJRome PrOJLondon

— Use U to re-construct horizontally fragmented relations.
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Re-Construct, Then Execute

The resulting plan is not very efficient:

m Of both input relations all fragments except one must (at least) be
sent over the network

— High communication overhead
— Index support?

However,
(RIUR) M (51US2) = (R X S1)U(R1 X S)U(Re X S1)U(R2 X S,)
And, whenever S; = S x R; (where S=S;U---US,), then
RiXS =0 fori#j ,
such that

RXS=(RiIXS)U(RNXS)U---U(R,XSp) .
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Re-Construct, Then Execute

For the example, this leads to the (better) query plan

T Title
USa/ary>100k
Mproj:pid pI‘O_] pid proj:pid
VRN VAN VAN
EmpParis PrOJParis EmpRome Pro./Rome EmpLondonPro./London
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Re-Construct, Then Execute

Even better strategy: push down projection and selection:

T Title T Title T Title
| | |
|>qproj:pid D<|proj:pid I><Iproj:pid
/N VRN VRN

OSalary>100k  Projpss  9Salary>100k Projrome 9 Salary>100k Proj; ondon

EmpParis EmpRome EmpLondon

— exploit (locally) available indexes

— reduce transfer volume
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Join Queries in Distributed Databases

Generally, each join between two fragments could involve three sites:
m The fragment R is located on site Hg.
m The fragment S is located on site Hs.
m The result RX S is needed on a third site Hyes.

This leaves several simple strategies to compute R X S:

Send R to Hs, join on Hs, send result to Hyes.

Hres

. WMS

Hr Hs
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Simple Join Strategies

Finally, R and S could both be sent to H,.s to compute the join
there.

To avoid unnecessary transfers of R tuples to Hs, tuples could be
fetched on demand.

fetch as needed
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Semi Join Filtering

Rather than fetching R tuples one-by-one, why not fetch match
candidates in bulk?

— Send list of join keys Hs — Hg, reply with candidate list.

More formally, this can be achieved with help of semi joins:

RIXS = (RIXS) XS = (RIXWjoinco/(S)) M S

“candidate list” “list of join keys"

That is:
HI‘GS

RIX S
7Tjoin CO/(S)

He—— = Hs

Rx S
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“Bloom Joins”

Once again, we can improve this idea by means of a Bloom filter.
— Rather than sending mjoin co/S along Hs — Hg, send only a bit
vector (Bloom filter).
— Save transfer volume on the Hs — Hg link.

(False positives might slightly increase transfer volumes on the Hg — Hs
link. But this increase is typically outweighed by savings along Hs — Hg.)

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018



Transaction Management

Distributed transactions may experience two new types of failure:

partial system failure

m In a centralized system, all components fail or none at all.
m In the distributed case, some nodes may fail, others may survive.

network failure, network partitioning

m Nodes might seem dead, while in fact they’re just in an
unreachable network region.

To still guarantee ACID, we need protocols to ensure
m atomic termination;
m global serialization; and
m that no global deadlocks can happen.
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Assumptions and Terminology

We assume the nodes in the system run independent database managers.

— We refer to the database managers involved in a distributed
transaction T as the cohorts of T.

We assume each site supports ACID and deadlock handling locally.

For each distributed transaction T there is one coordinator, e.g.,
— dedicated coordinator
— site where T was issued

— elected coordinator, either once or per transaction.
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Atomic Commit Protocol

Cohorts must reach agreement on the outcome of a transaction.
— Every cohort must have the chance to veto/abort.

“Do you take ... as your “Doyou ... asyour X
lawful wedded wife ... 7" ... husband ... 7" [
nful wedded i

<

... you husband
and wife.”

“I hereby
pronounce. . .
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Two-Phase Commit Protocol

The two-phase commit protocol follows the same principle:

Coodinator Cohort
T prepare message
—  )
A Force PREPARE
2 ready message record to log -
- a
D
4 Record vote g
Force COMMIT 2.
record to log . g
commit message o
o .  S
Q . g
g Local commit =
= done message
a /
Write COMPLETE
to log and clean up.
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Two-Phase Commit Protocol

Coordinator sends prepare message to all cohorts.
If a cohort is willing to commit:

— Respond with ready.

— Confirms that cohort is able to commit (even if it crashes
after response) — force PREPARE to log.

— Cohort cannot unilaterally abort after sending ready.

— After sending ready, cohort waits for commit from coordinator.

Otherwise, the cohort responds with abort.

After sending ready, the cohort must wait for the coordinator decision.
— Cannot commit locally, yet. Other cohorts might have voted abort.

— Cannot abort locally—promised to coordinator that it won't.
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Two-Phase Commit Protocol

Coordinator receives and records each cohort’s vote.
Coordinator decides whether TX can be committed globally.

— commit: Force COMMIT to log, then send commit to all cohorts.
— abort: Send ABORT to all cohorts.

Upon COMMIT, cohorts commit locally and respond with done.

After all cohorts have responded done, coordinator can release its
data structures for this transaction.

Q. Which is the point that actually marks the TX as committed?
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Dealing with Failures—Timeouts

Timeout Protocol:

m Triggered when a site does not receive an expected message.

Cohort times out while waiting for prepare message.
m No global decision made, yet.
m Cohort can unilaterally decide on abort.
— Respond to later prepare with abort.

Coordinator times out while waiting for ready/abort vote.
m Similar situation, can decide on abort.
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Dealing with Failures—Timeouts

Cohort times out while waiting for commit/abort message.
m Cannot unilaterally decide on commit or abort.
m Only option: Try to determine transaction outcome.

— Actively request from coordinator (which might be
unreachable).

— Ask other cohorts.
(If another cohort hasn’t voted yet, both can decide to abort.)

m Otherwise the cohort remains blocked.

Coordinator times out while waiting for done message.

m Not a critical situation. Coordinator just cannot release its
resources.
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Dealing with Faillures—Machine Crashes

Restart Protocol:

m Triggered when coordinator or cohort restart after a crash.

Coordinator Restart:
m COMMIT record found in log:
— Send commit to all cohorts
(Crash might have happened before commits were sent.)
m No COMMIT record found in log:

— Protocol was still in phase 1 when crash occured.
— Coordinator had decided on abort before crash.
— In both cases: abort transaction (by sending abort).
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Dealing with Faillures—Machine Crashes

Cohort Restart:
m COMMIT record found in log:
— Local commit completed successfully. Nothing more to do.
m PREPARE record found in log:
— Must request TX outcome (from coordinator).

m No PREPARE record found in log:

— No commitment made to coordinator.
— Can decide on abort unilaterally.
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Global Serialization

To ensure serializability:
m Manage locks at central site ~ centralized concurrency control

— Single point of failure
— High communication overhead

@ Local transactions must go through
(remote) lock manager, too!

m Manage locks local to the data
— Global serializability?
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Global Serialization

Theorem:

Locally: strict two-phase locking

ﬁ Two-Phase Commit

Global schedule is serializable.

— Local serializability plus two-phase commit are enough to realize
global serializability.
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Distributed Deadlocks

Some strategies for deadlock handling also work in distributed settings:
m asymmetric lock handling: wait-die/wound-wait

m timeout

Distributed deadlock detection is more difficult:
m Periodically collect waits-for information at a central site.
— Then handle as in single-machine case.
— Might cause high network transfer volumes.

m When a deadlock is suspected, try to discover it through
peer-to-peer information exchange.

— T waits for a lock on an external site H — contact H.
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Data Replication—Read-One/Write-All

Replication:
— Improve availability (possibly also efficiency)

How guarantee consistency?

Strategy 1: Synchronous replication; read-one/write-all

m Writes are synchronously propagated to all replica sites.
— Lock at least one replica immediately; lock and update all at

commit time.
— Coordinate replica updates, e.g., using Two-Phase Commit.

m Reads may use any replica.

— Good for read-heavy workloads.
— Lots of locks — locking overhead, risk of deadlocks

— Writes cannot complete when a replica site is unavailable.
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Data Replication—Quorum Consensus Protocol

Strategy 2: Synchronous replication; Quorum Consensus Protocol

Problem:

m A reader does not see a write's change, because both looked at
different replica of the same object.

Thus:

m Make sure readers and writers always “see” one another.
— in “read-one/write-all" this was guaranteed.
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Quorum Consensus Protocol

Quorum Consensus Protocol:
m Total number of replica (of some item): N
m Readers access at least Qr copies.
m Writers access at least Qy/ copies.

To detect read/write conflicts:
— Read set/write set must overlap.
— Qr+ Qw >N

To detect write/write conflicts:

— Write set/write set must overlap.
— Qw + Qw >N (<=>2~Q\/V>N)
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Quorum Consensus Protocol

Protocol can be tuned to trade update cost <+ availability.
m Read-one/write-all: Qr =1, Quw =N

Implementation:
m Store commit time stamp with each object.
— Use the latest version within the read object set.

m Node unavailability is not a problem, as long as transactions can
assemble necessary quorums.

Variant of Quorum Consensus:
m Set a weight w; for each replica.
m Quorums must now satisfy Qr + Qw > >, wj and 2- Qu > >, w;.
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Asynchronous Replication: Primay Copy Replication

Strategy 3: Asynchronous replication; primary copy

m For each object, one replica is designated its primary copy.
m All updates go to primary copy.
m Updates are propagated asynchronously to secondary copies.

m Reads go to any node.

Properties:
— Asynchronous replication avoids high overhead at commit time.
— Simple to implement: Forward write-ahead log to secondary copies.
— Good fit for many application patterns
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Primary Copy Replication

However:

m Reader might see old/inconsistent data.

Guarantee Serializability:
m Run read-only transactions on secondary copy sites.
m Run read/write transactions on primary copy site.

— Reads of read/write transactions go to primary site, too.
— Alternative: Readers wait on secondary sites if necessary.

m Multi-version concurrency control — consistent reads.
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Example: Ganymed

Example: Ganymed

Management Fixed Installation Dynamically assigned Joining Satellite
p A
erimaril
Satellite
DEMS
) 1
WriteSets (WS)

Requests .

Ganymed Dispatcher

SQL Expressions handled
by Satellites

Plattner et al. Extending DBMSs with Satellite Databases. VLDB Journal,
17:657-682, 2008.
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Example: Ganymed

TPS Comparison, 100 clients

500% - TPC-W Br'owsing Trace —x—

(2] TPC-W Shopping Trace ----e--- e
& 400% [ TPC-W Ordering Trace - et
<] O/ L A e e A
8 300%
Q2 200% i
< Lo

100%

PGSQL SAT-0 SAT-1 SAT-2 SAT-3 SAT-4 SAT-5
System Type

@
£ Response Time Comparison, 100 clients
® T T T T
£ 120% TPC-W Browsing Trace —»*— |-
= o TPC-W Shopping Trace --—--e---
o 100% TPC-W Ordering Trace -----4--- |7
2 80%
9]
3 60%
o]
o 40%
S 20%
o
o
3: PGSQL SAT-0 SAT-1 SAT-2 SAT-3 SAT-4 SAT-5

System Type
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Scenarios

Scenarios for asynchronous replication:

m Data Warehousing:

— Propagate changes from transactional system to warehouse
(e.g., periodically).

m Specialized Satellites:
— Satellite systems need not be identical to primary copy.
— Build specialized indexes on satellites.

— Use different data organization (e.g. column store)
— etc.

m Hot Standby:

— Secondary provides an up-to-date copy of all data.
— Swap primary <> secondary in case of failure.
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Asynchronous Replication: Group Replication

Strategy 4: Asynchronous replication; group replication

m Allow updates on any replica and propagate afterward.

Site A Site B Site C Site D
T

Ty
update x update x

— Consistency?

propagate

awn
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Group Replication

Conflicting updates might arrive at a site.
m Need a conflict resolution mechanism.
m £.g., assign time stamps to updates and let latest win.

— Replicas will eventually contain the same value.
— No serializability, however.
(E.g., lost updates are still possible.)

m Sometimes, user-defined conflict resolution makes sense.
— E.g., accumulate value increments.
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Brewer's CAP Theorem

We've seen multiple trade-offs between

m Consistency
In the database domain, we'd like to have ACID guarantees.
m Availability
Every request received by a non-failing node should result in a
response.
m Partition Tolerance

No set of failures less than a total network outage should cause the
system to respond incorrectly.
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Brewer's CAP Theorem

In a PODC keynote 2000, Eric Brewer stated the “CAP Theorem”:

In a distributed computer system it is impossible
to provide all of the three guarantees

m Consistency,
m Availability, and
m Partition Tolerance.

Notes:

m Here, “consistency” means “linearizability,” a criterion usually used
in the distributed systems community.
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CAP Theorem

Two of the three CAP properties can be achieved together:

m Consistency and Availability (drop Partition Tolerance)
Many of the techniques we discussed with provide consistency and
availability, but they will fail when a partition happens.

m Consistency and Partition Tolerance (drop Availability)
E.g., always enforce consistency; deny service when nodes do not
respond.

m Availability and Partition Tolerance (drop Consistency)
System might become inconsistent when a partition happens; e.g.,
“group replication” discussed above.
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CAP Theorem—Proof

Proof by contradiction; assume
m System provides all three properties.
m Two nodes G and G» in separate partitions
— G and Gp cannot communicate.

Initially, the value of v is vy on all nodes.
A write occurs on Gy, updating vo — vy.
— By the availability assumption, this write completes.
A later read occurs on Go.
— Read will complete (availability), but return old value vy.

4 Consistency is violated.
(Or, to ensure consistency, either the read or the write would have
to block because of the network partition.)
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Consequences

So, since we cannot have all three. ..

...drop partition tolerance?
— What does this mean?
We can try to improve network reliability; but partitions might still
occur. And if a partition happens, what will be the consequence?
... drop availability?
— A (generally) unavailable system is useless.

— In practice: loss of availability = loss of money.

...drop consistency?
— DB people really don't like to give up consistency. ©
— Yet, it's best understood and can typically be handled.
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Consequences

Trade-off:

availability <+ consistency 7

m Systems that sacrifice consistency tend to do so all the time.
m Availability only given up when partitioning happens.

Many systems, strictly speaking, even give up both!

— Improve latency by doing so.
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BASE Properties

Many large-scale distributed systems follow the BASE principles:

m Basically Available,
— Prioritize availability
m Soft State,

— Data might change (without user input); e.g., to reach
consistency.

m Eventually Consistent.

— System might be inconsistent at times, but “eventually” reach
a consistent state (~ group replication)
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Amazon Dynamo

An example of the (new) availability <+ consistency trade-off is

Amazon’s Dynamo?°.

Situation at Amazon:
m Service-oriented architecture, decentralized
— Page request results in &~ 150 service requests.
— Need stringent latency bounds (~ look at 99.9th percentile).
m Availability is top priority
— Everything else is a lost selling opportunity.
CAP theorem: “drop consistency”

‘>
— Choose asynchronous replication, no primary copy
— Need conflict resolution strategy

2DeCandida et al. Dynamo: Amazon's Highly Availabe Key-value Store. SOSP '07.
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Fragmentation and Allocation in Dynamo

m Hash all key values into the
range [0, 1[ (~ treat as a ring).

m Nodes are placed at random
positions [0, 1].

m Place an object o = (k, v) on
the node that follows hash(k)
clockwise.

— Place on next N nodes for
replication factor N.

m When a node H joins/leaves:

— Copy data from/to node *sto_red onB, C, Dif
that precedes/follows H. replication factor is 3
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Consistent Hashing; Virtual Nodes

Advantages:
m Resilience to skew

m Easy to scale (add/remove nodes to ring)
Problem:

m Hot spot when a node joins/leaves, or in case of node failure.
Thus:

m Let each physical machine represent multiple nodes in the ring (~
“virtual nodes”); position all (virtual) nodes randomly in the ring.

— Every (physical) machines neighbors with multiple others.
— Avoid hot spots.

— Stronger hardware — more positions in the ring.
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Replication and Consistency

Dynamo uses a variant of quorum consensus to realize replication.
m Starting from an object o's hash value hash(k), the first N (virtual)
nodes that follow clockwise hold replicas of 0.27
m These N nodes are called the preference list for k.
m Read/write objects according to quorums Qr/Qw (" slide 445).
m Use Qg and Qu to tune for application needs.

— Typical values: N =3, Qr = Qu = 2.
— Read-mostly applications: Quw =N, Qr = 1.

27 Actually, choose replica nodes such that replicas end up on different machines.
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Hinted Handoff

Problem: Quorum may be unreachable because of failures.
— “partition tolerance”

Thus: Use first N healthy nodes for read/write operations.
Eg.,
m Quorum: N=3: Qr=Qw =2
m Key h hashes between A and B
m C and D are unavailable
[ ]

Send write to B, E, and F.

— The latter two with a hint
— E and F will attempt to deliver
the update to C and D.
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Inconsistencies / Conflict Resolution

Hinted handoff may lead to inconsistencies.
Conflict resolution: Latest update wins?
— Risk of lost updates (" slide 454)

Thus:
m Track causality and resolve conflicts automatically.
~» syntactic reconciliation
m Otherwise defer conflict resolution to application.
~> semantic reconciliation
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Data Versioning / Vector Clocks

Data Versioning:
m With each stored object, keep version information.
m Version information: vector of timestamp counters x = (xg, ..., xk)
— One vector position for each node in the system
— “vector clock”
m Multiple versions of the same object may be in the system at the
same time.
— A get () operation returns all of them, together with their
vector clock.
— Reconcile them after the read; generate new vector clock; and
write back new version.
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Read/Write Operations

E.g., read/write combination executed on node m:

/* Read (all) old versions */
1 {(x1, valuey), (xo, values), . . ., (Xn, value,) } < get (key) ;

/* Reconcile */
2 (X, value) < reconcile ({(x1, value;), ..., (xn, value,)}) ;

/* Increment vector clock x at position m */
3 x[m] <= x[m]+1;

/* Write back new version (with new vector clock x) */

4 put (x, key, value) ;
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Reconciliation

Causality:
m Given two vector clocks x = (xg, ..., x¢)andy = (1, ..., Vi),

Vi=1l....k:xi <y, = x—>»y,

i.e., y descends from x.
m X - y means there is a causal relation from x to vy.
— x “older” thany and can be discarded (syntactic reconciliation).
m If neither x = y nor y — X, they are a result of parallel updates.
— Semantic reconciliation necessary.

m New vector clock: Use max(x;, y;) for each vector position i.
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Vector Clocks: Example

update on S, values
{(5x.2). (5. 1)}

N

reconciled and

original version

values
updated on S, {(5¢,2), (5, 2),

/
\ (Sz. 1)}

/
valueg

parallel {(5¢,2),(S., 1)}
update on S,

valuey values
{(S« 1)} {(5x.2)}

update on Sy

Conflict detected during last update:

m Node Sy reads values and values with their version clocks.
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Implementation Issues

Coordinators:
m Choose a “coordinator” to handle update of an object o.
— One of the nodes in o's preference list.
m Dynamo lives in a trusted environment.
— Link storage node interaction directly into client application.

Vector Clocks:
m Few coordinators for every object o
— Version vector sparse (most counters are 0)
— Implement as list of (node, counter) pairs
m Vector sizes will grow over time

— Limit number of list entries (e.g., 10 entries)
— Truncate vector clocks if necessary
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Vector Clock Truncation

In practice, parallel/conflicting versions are rare

— Truncating vector clocks won't actually hurt.

E.g., Live trace over 24 hours at Amazon:
m 99.94 % requests saw 1 version
m 0.00057 % saw 2 versions
m 0.00047 % saw 3 versions
m 0.00009 % saw 4 versions
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Ring Membership / Replica Synchronization

Ring Membership:
m Propagate membership information through gossip-based protocol.

— Avoid single point of failure
— Node arrival or departure announced explicitly in Dynamo

Replicas might still go out of sync:

m £.g., hinted handoff: backup node goes offline before it can forward
updates to final destination ( slide 466)

Use Merkle trees to check/re-establish consistency:

m Only little data exchange necessary to locate inconsistencies.
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Merkle Trees

Tree of hashes, which cover the key space below them:

h([ao. as])
/ \
h([ao, 34]) h([a4' 38])
AN N
h([ao. a2]) h([a2, a4]) h([a4. a6]) h([ae. as])
\ K N\ \ \
h([a1, a2]) h([as, as]) h([as, ae]) h([a7, ag])
h([ao, a1]) I h([az, az]) I h([as, as]) T h([ae, a7]) T
Il T 1 Il
a0 a 2 a3 2 25 . 2, 28
key space

(© Jens Teubner - Architecture & Implementation of DBMS - Summer 2018



Dynamo Performance

Performance criterion:
m Strong latency guarantees
m e.g., SLA: 99.9% of all requests must execute within 300 ms.
— Average performance is not the primary criterion here.
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Dynamo Performance

Buffered Writes: trade durability <> performance
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Compromise: Force flush on only one node (out of the Q).
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Partitioning and Placement on Storage Nodes

Strategy 1: (as discussed before)
m Place (virtual) nodes randomly in key space
— Partitioning and placement are intertwined.
m Simple to scale on paper, harder to do in practice:

— Data must be moved when nodes are added/removed

— Since partitioning changes, everything has to be re-computed:
data to move, Merkle trees, etc.

— Data archival for changing key ranges?
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Partitioning and Placement on Storage Nodes

Strategy 2: (equi-sized partitions; random tokens for each storage node)

m Generate random ring positions for each (virtual) node, as before.
m Static partitioning; Q equi-sized partitions.

— Use partition end to determine preference list

— All keys in one partition reside on same node

Strategy 3: (deployed meanwhile at Amazon)
m Equi-sized partitions; assign partitions (randomly) to nodes.
— Randomly distribute/ “steal” partitions when a node
leaves/joins.
m Partitioning now simple and fixed

— Data structures for one partition don't change, just have to be
moved (e.g., when nodes leave/join, or for backup).
— Membership information more compact to represent.
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Partitioning/Placement Strategies

Strategy 1 Strategy 2 Strategy 3
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Evaluation of Partitioning/Placement Strategies
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