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Part X

Distributed Databases
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Distributed Databases

Parallel databases assume tight coupling between nodes.

→ e.g., local cluster

→ main goal: parallel execution

Distributed databases have a slightly

different motivation.

geographically separate locations

sites run full DBMS

locality effects

run local queries independently,

but still allow for global queries

→ e.g., for analytics

increase availability / failure tolerance
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Transparent Distribution

Want to keep distribution transparent:

Distributed Data Independence

→ Clients need not know how data is distributed or where objects

are located.

→ Automatic optimizer decides on distributed query plans.

Distributed Transaction Atomicity

→ Transactions across sites should be atomic.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 397



Storing Data in a Distributed DBMS

Fragmentation:

Break data into fragments and store them on sites.

→ Exploit knowledge about data and access pattern

Replication:

Place data/fragments on multiple sites

→ increased availability

→ faster query evaluation

Both are trade-offs:

achievable parallelism; communication cost; synchronization;

available space; failure tolerance
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Horizontal Fragmentation

Each fragment consists of a subset of rows of the original relation.

Projects

pid Title Office Budget

1 Aquarius London 16000

2 Eridanus Paris 21000

3 Centaurus Paris 17000

4 Andromeda Rome 29000

5 Pegasus London 23000

→

Projects

pid Title Office Budget

2 Eridanus Paris 21000

3 Centaurus Paris 17000

4 Andromeda Rome 29000

1 Aquarius London 16000

5 Pegasus London 23000

Express each fragment as a selection on the input relation.

Projects1 = σOffice=‘Paris’

(
Projects

)
Projects2 = σOffice=‘Rome’

(
Projects

)
Projects3 = σOffice=‘London’

(
Projects

)
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Correctness Rules

Completeness:

Each item in R can be found in (at least) one fragment Ri .

Reconstruction:

It must be possible to re-construct R from the Ri .

→ “It must be possible to define a relational operator ∇
such that R = ∇ (R1, . . . ,Rn).”

Disjointness:

Fragments do not overlap; i.e., no data item is assigned to multiple

fragments.
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Horizontal Fragmentation

Horizontal fragmentation is defined by predicates pi :

Ri = σpi

(
R
)
.

How do we find predicates pi such that the fragmentation is

correct

well-suited for the given application and data set?

Observation: Breaking a relation (fragment) into a pair of fragments

ensures correctness:

R ; R1 = σp

(
R
)

; R2 = σ¬p

(
R
)
.
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Horizontal Fragmentation

Idea: Derive pi from workload information.

Step 1: Analyze workload

Qualitative Information: Predicates used in queries

→ Extract simple predicates of the form

sj = attribute θ constant ,

where θ ∈ {=, <, 6=,≤, >,≥}.
→ Observe that simple predicates are easy to negate.

→ We refer to a conjunction of (negated) simple predicates as a

minterm.

Quantitative Information:

→ minterm selectivity

→ access frequency (of a minterm or a query)
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Example

Queries:

Q1:

SELECT Title

FROM Projects

WHERE Office = ‘Paris’

Q2:

SELECT Office

FROM Projects

WHERE Budget BETWEEN

15000 AND 20000

Simple Predicates:

s1 ≡ Office = ‘Paris’

s2 ≡ Budget ≥ 15000

s3 ≡ Budget ≤ 20000
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Horizontal Fragmentation: Enumerate Minterms

Step 2: Enumerate Possible Minterms

Build all possible minterms with given simple predicates and their

negation.

Example:

m1 ≡ Office = ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget ≤ 20000

m2 ≡ Office 6= ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget ≤ 20000

m3 ≡ Office = ‘Paris’ ∧ Budget < 15000 ∧ Budget ≤ 20000

m4 ≡ Office 6= ‘Paris’ ∧ Budget < 15000 ∧ Budget ≤ 20000

m5 ≡ Office = ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget > 20000

m6 ≡ Office 6= ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget > 20000

m7 ≡ Office = ‘Paris’ ∧ Budget < 15000 ∧ Budget > 20000

m8 ≡ Office 6= ‘Paris’ ∧ Budget < 15000 ∧ Budget > 20000
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Horizontal Fragmentation: Prune Minterms

Step 3: Prune Set of Minterms

Some constructed minterms may be unsatisfiable.

Others can be simplified, because predicates imply one another.

Example:

m1 ≡ Office = ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget ≤ 20000

m2 ≡ Office 6= ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget ≤ 20000

m3 ≡ Office = ‘Paris’ ∧ Budget < 15000 ∧ Budget ≤ 20000

m4 ≡ Office 6= ‘Paris’ ∧ Budget < 15000 ∧ Budget ≤ 20000

m5 ≡ Office = ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget > 20000

m6 ≡ Office 6= ‘Paris’ ∧ Budget ≥ 15000 ∧ Budget > 20000

m7 ≡ Office = ‘Paris’ ∧ Budget < 15000 ∧ Budget > 20000

m8 ≡ Office 6= ‘Paris’ ∧ Budget < 15000 ∧ Budget > 20000
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Horizontal Fragmentation: Relevant Minterms

Step 4: Remove “Irrelevant” Predicates

Enumeration leads to a large number of minterms (; fragments).

→ Each simple predicate breaks all fragments into two halves.

Some simple predicates may not be a meaningful sub-fragmentation

for all fragments.

→ E.g., a predicate might occur in the workload only in

combination with another predicate.

Thus: If two minterms mi = m ∧ p and mj = m ∧ ¬p are always

accessed together (p is not relevant), drop p and replace mi and mj

by just m.

(See Öszu and Valduriez; Principles of Distributed Database Systems; Springer

2011 for more details.)
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Minterms → Fragments

Step 5: Define Fragments

Steps 1–4 resulted in a set of minterms (here: minterms m1–m6).

→ Each of these minterms defines one fragment.

R1
def
= σm1

(
R
)

...

→ Here: 6 fragments24

Note:

We’re still left with an allocation strategy to place fragments on

(network) nodes.

24Some of these fragments may be empty for a given database instance. They are,

nevertheless, fragments.
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Derived Horizontal Fragmentation

Suppose we partitioned relation

Projects horizontally.

→ To facilitate joins, it makes sense

to co-locate tuples of Projects

and Employees.

→ Define fragmentation of

Employees based on

fragmentation of Projects.

Projects

pid Title Office Budget

2 Eridanus Paris 21000

3 Centaurus Paris 17000

4 Andromeda Rome 29000

1 Aquarius London 16000

5 Pegasus London 23000

Derived horizontal fragmentation:

EmployeesParis
def
= Employees n ProjectsParis

→ To compute the join, it is now enough to consider only

“corresponding” fragments.
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Derived Horizontal Fragmentation

The correctness of primary horizontal fragmentations was easy to prove.

The correctness of derived horizontal fragmentations is less simple:

Completeness:

→ Employees that do not belong to any project will disappear.

→ Completeness holds, however, when referential integrity is

guaranteed.

Reconstruction:

→ The original relation can be re-constructed from a complete

horizontal fragmentation using the union operator ∪.

Disjointness:

→ Semijoin operator n does not prevent overlaps per se.

→ Together with integrity constraints, disjointness may still be

easy to show.
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Vertical Fragmentation

Sometimes, it is more meaningful to split tables vertically:

Employees

eid Name Proj. Salary

628 J. Smith 1 58000

262 D. Miller 4 184000

381 P. Hanks 1 52000

725 D. Clark 3 55000

395 P. Jones 4 143000

738 S. Miles 2 38000

→

Employees1
eid Name Proj.

628 J. Smith 1

262 D. Miller 4

381 P. Hanks 1

725 D. Clark 3

395 P. Jones 4

738 S. Miles 2

Employees2
eid Salary

628 58000

262 184000

381 52000

725 55000

395 143000

738 38000

→ Keep key column in both fragments, so original relation can be

re-assembled by means of a join.

→ Strictly speaking, vertical fragmentation always leads to

non-disjointness.
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Vertical Fragmentation

Finding a vertical fragmentation scheme is inherently more complex.

“Only” 2n minterms for n simple predicates.

But B(m) partitions for m non-key columns.25

Heuristics:

Group Create one fragment for each (non-key) column, then

iteratively merge fragments.

Split Start with one relation and repeatedly partition it.

Input:

Information about attribute affinity. Given two attributes Ai and

Aj , how frequently are they accessed together in the workload?

25B(m) is the mth Bell number; B(10) ≈ 115 000; B(15) ≈ 109.
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Hybrid Fragmentation

Horizontal and vertical fragmentation can be combined (arbitrarily).

E.g.,

Employees11
eid Name Proj.

628 J. Smith 1

738 S. Miles 2

381 P. Hanks 1

Employees12
eid Name Proj.

725 D. Clark 3

395 P. Jones 4

262 D. Miller 4

Employees2
eid Salary

628 58000

738 38000

381 52000

725 55000

395 143000

262 184000

→ Re-construct using a combination of joins and unions.
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Allocation

Next Step: Allocate fragments to nodes.

Allocation

Non-Redundant Redundant

Full Replication Partial Replication
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Replication

Replication is a two-edged sword:

no partial full

replication replication replication

query processing hard hard easy

reliability low high high

storage demand low moderate high

parallel query potential moderate high high

parallel update potential high moderate low

concurrency control easy hard moderate
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Allocation — Criteria

Minimize Response Time

Local data availability avoids communication delays.

But updates might suffer from too much replication.

Maximize Availability

Use redundancy to avoid down times.

Minimize Storage and Communication Cost

For reads, replication may reduce communication; for writes it is the

other way round.
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Heuristic 1: “Non-Redundant Best Fit” Method

Rationale: What is the best node for each fragment?

1 Analyze workload: Which fragments are accessed by queries issued

at which node?

→ Local placement benefits a query.

2 Place each fragment such that its total benefit is largest.

→ Break ties by allocating on the least loaded node.
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Example: “Non-Redundant Best Fit”

accessed number

fragment from node of accesses

R1 H1 12

H2 2

R2 H3 27

R3 H1 12

H2 12

→ Place fragment R1 on node H1.

→ Place fragment R2 on node H3.

→ Place fragment R3 on node H2 (H1 already holds R1).
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“Non-Redundant Best Fit”

Pros:

Easy to compute

Cons:

Only considers benefits, but ignores costs

Cannot support replication

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 418



Heuristic 2: “All Beneficial Nodes” Method

Rationale: Improve availability by allowing replication.

Placing a fragment Ri on a node Hj causes. . .

. . . a benefit:

Improved response time for every query at Hj that references Ri .

. . . a cost:

Effort to update the replica in case of writes.

Allocation strategy:

1 Compute, for all Ri /Hj combinations, the effective cost (cost minus

benefit) of allocating Ri at Hj .

2 Place a fragment Ri on node Hj whenever benefit exceeds cost.
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“All Beneficial Nodes” Method

Pros:

Still simple

Cons:

Network topology not considered (only local ↔ remote)
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Heuristic 3: “Progressive Fragment Allocation”

Rationale: Build on “All Beneficial Nodes”, but consider influence of

allocation decisions on one another.

Strategy:

Place one copy of each fragment so benefit/cost is maximised.

Continue placing replicas one-by-one, always considering the existing

fragment allocations.

→ Stop when additional placement provides no more benefit.

Properties:

Progressive Fragment Allocation considers the most relevant cost

aspects at a reasonable algorithm complexity.
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Query Processing over Fragmented Data

Consider an example:

SELECT p.Title

FROM Employees AS e, Projects AS p

WHERE e.Proj = p.pid

AND e.Salary > 100000

Let us assume

Projects was fragmented horizontally, so project-relevant data can

be stored local to the project;

a derived horizontal fragmentation was used to co-locate

employees with their projects.

What is a good way to execute the above join?
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Re-Construct, Then Execute

Idea: Re-Construct global relations, then evaluate query:

πTitle

σSalary>100k

1proj=pid

∪

EmpParis EmpRome EmpLondon

∪

ProjParis ProjRome ProjLondon

→ Use ∪ to re-construct horizontally fragmented relations.
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Re-Construct, Then Execute

The resulting plan is not very efficient:

Of both input relations all fragments except one must (at least) be

sent over the network

→ High communication overhead

→ Index support?

However,(
R1∪R2

)
1
(

S1∪S2
)
=
(

R1 1 S1
)
∪
(

R1 1 S2
)
∪
(

R2 1 S1
)
∪
(

R2 1 S2
)
.

And, whenever Si = S n Ri (where S = S1 ∪ · · · ∪ Sn), then

Ri 1 Sj = ∅ for i 6= j ,

such that

R 1 S =
(

R1 1 S1
)
∪
(

R2 1 S2
)
∪ · · · ∪

(
Rn 1 Sn

)
.
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Re-Construct, Then Execute

For the example, this leads to the (better) query plan

πTitle

σSalary>100k

∪

1proj=pid

EmpParis ProjParis

1proj=pid

EmpRome ProjRome

1proj=pid

EmpLondonProjLondon
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Re-Construct, Then Execute

Even better strategy: push down projection and selection:

∪

πTitle

1proj=pid

σSalary>100k

EmpParis

ProjParis

πTitle

1proj=pid

σSalary>100k

EmpRome

ProjRome

πTitle

1proj=pid

σSalary>100k

EmpLondon

ProjLondon

→ exploit (locally) available indexes

→ reduce transfer volume
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Join Queries in Distributed Databases

Generally, each join between two fragments could involve three sites:

The fragment R is located on site HR .

The fragment S is located on site HS .

The result R 1 S is needed on a third site Hres .

This leaves several simple strategies to compute R 1 S :

1 Send R to HS , join on HS , send result to Hres .

HR HS

Hres

R
R 1 S
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Simple Join Strategies

2 Finally, R and S could both be sent to Hres to compute the join

there.

HR HS

Hres

R S

3 To avoid unnecessary transfers of R tuples to HS , tuples could be

fetched on demand.

HR HS

Hres

fetch as needed

R 1 S
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Semi Join Filtering

Rather than fetching R tuples one-by-one, why not fetch match

candidates in bulk?

→ Send list of join keys HS → HR , reply with candidate list.

More formally, this can be achieved with help of semi joins:

R 1 S =
(

“candidate list”

R n S
)
1 S =

(
R n

“list of join keys”

πjoin col(S)
)
1 S

That is:

HR HS

Hres

πjoin col(S)

R n S

R 1 S
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“Bloom Joins”

Once again, we can improve this idea by means of a Bloom filter.

→ Rather than sending πjoin col S along HS → HR , send only a bit

vector (Bloom filter).

→ Save transfer volume on the HS → HR link.

(False positives might slightly increase transfer volumes on the HR → HS

link. But this increase is typically outweighed by savings along HS → HR .)
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Transaction Management

Distributed transactions may experience two new types of failure:

1 partial system failure

In a centralized system, all components fail or none at all.

In the distributed case, some nodes may fail, others may survive.

2 network failure, network partitioning

Nodes might seem dead, while in fact they’re just in an

unreachable network region.

To still guarantee ACID, we need protocols to ensure

atomic termination;

global serialization; and

that no global deadlocks can happen.
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Assumptions and Terminology

We assume the nodes in the system run independent database managers.

→ We refer to the database managers involved in a distributed

transaction T as the cohorts of T .

We assume each site supports ACID and deadlock handling locally.

For each distributed transaction T there is one coordinator, e.g.,

→ dedicated coordinator

→ site where T was issued

→ elected coordinator, either once or per transaction.
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Atomic Commit Protocol

Cohorts must reach agreement on the outcome of a transaction.

→ Every cohort must have the chance to veto/abort.

“Do you take . . . as your

lawful wedded wife . . . ?”

“I do.”

“Do you . . . as your

. . . husband . . . ?”

“I do.”

“I hereby

pronounce. . .

. . . you husband

and wife.”

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 433



Two-Phase Commit Protocol

The two-phase commit protocol follows the same principle:

Coodinator Cohort

Force PREPARE
record to log

prepare message

Record vote

Force COMMIT
record to log

ready message

Local commit

commit message

Write COMPLETE

to log and clean up.

done message

P
h

a
se

1
P

h
a

se
2

U
n

certa
in

P
erio

d
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Two-Phase Commit Protocol

1 Coordinator sends prepare message to all cohorts.

2 If a cohort is willing to commit:

→ Respond with ready.

→ Confirms that cohort is able to commit (even if it crashes

after response) → force PREPARE to log.

→ Cohort cannot unilaterally abort after sending ready.

→ After sending ready, cohort waits for commit from coordinator.

Otherwise, the cohort responds with abort.

After sending ready, the cohort must wait for the coordinator decision.

→ Cannot commit locally, yet. Other cohorts might have voted abort.

→ Cannot abort locally—promised to coordinator that it won’t.
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Two-Phase Commit Protocol

3 Coordinator receives and records each cohort’s vote.

4 Coordinator decides whether TX can be committed globally.

→ commit: Force COMMIT to log, then send commit to all cohorts.

→ abort: Send ABORT to all cohorts.

5 Upon COMMIT, cohorts commit locally and respond with done.

6 After all cohorts have responded done, coordinator can release its

data structures for this transaction.

� Which is the point that actually marks the TX as committed?

Forcing the COMMIT record on the coordinator site makes the

transaction outcome final.
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Dealing with Failures—Timeouts

Timeout Protocol:

Triggered when a site does not receive an expected message.

Cohort times out while waiting for prepare message.

No global decision made, yet.

Cohort can unilaterally decide on abort.

→ Respond to later prepare with abort.

Coordinator times out while waiting for ready/abort vote.

Similar situation, can decide on abort.
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Dealing with Failures—Timeouts

Cohort times out while waiting for commit/abort message.

Cannot unilaterally decide on commit or abort.

Only option: Try to determine transaction outcome.

→ Actively request from coordinator (which might be

unreachable).

→ Ask other cohorts.

(If another cohort hasn’t voted yet, both can decide to abort.)

Otherwise the cohort remains blocked.

Coordinator times out while waiting for done message.

Not a critical situation. Coordinator just cannot release its

resources.
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Dealing with Failures—Machine Crashes

Restart Protocol:

Triggered when coordinator or cohort restart after a crash.

Coordinator Restart:

COMMIT record found in log:

→ Send commit to all cohorts

(Crash might have happened before commits were sent.)

No COMMIT record found in log:

→ Protocol was still in phase 1 when crash occured.

→ Coordinator had decided on abort before crash.

→ In both cases: abort transaction (by sending abort).
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Dealing with Failures—Machine Crashes

Cohort Restart:

COMMIT record found in log:

→ Local commit completed successfully. Nothing more to do.

PREPARE record found in log:

→ Must request TX outcome (from coordinator).

No PREPARE record found in log:

→ No commitment made to coordinator.

→ Can decide on abort unilaterally.
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Global Serialization

To ensure serializability:

Manage locks at central site ; centralized concurrency control

→ Single point of failure

→ High communication overhead

� Local transactions must go through

(remote) lock manager, too!

Manage locks local to the data

→ Global serializability?
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Global Serialization

Theorem:

Locally: strict two-phase locking=⇒

Two-Phase Commit

Global schedule is serializable.

→ Local serializability plus two-phase commit are enough to realize

global serializability.
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Distributed Deadlocks

Some strategies for deadlock handling also work in distributed settings:

asymmetric lock handling: wait-die/wound-wait

timeout

Distributed deadlock detection is more difficult:

Periodically collect waits-for information at a central site.

→ Then handle as in single-machine case.

→ Might cause high network transfer volumes.

When a deadlock is suspected, try to discover it through

peer-to-peer information exchange.

→ T waits for a lock on an external site H → contact H.
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Data Replication—Read-One/Write-All

Replication:

→ Improve availability (possibly also efficiency)

How guarantee consistency?

Strategy 1: Synchronous replication; read-one/write-all

Writes are synchronously propagated to all replica sites.

→ Lock at least one replica immediately; lock and update all at

commit time.

→ Coordinate replica updates, e.g., using Two-Phase Commit.

Reads may use any replica.

→ Good for read-heavy workloads.

→ Lots of locks → locking overhead, risk of deadlocks

→ Writes cannot complete when a replica site is unavailable.
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Data Replication—Quorum Consensus Protocol

Strategy 2: Synchronous replication; Quorum Consensus Protocol

Problem:

A reader does not see a write’s change, because both looked at

different replica of the same object.

Thus:

Make sure readers and writers always “see” one another.

→ in “read-one/write-all” this was guaranteed.
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Quorum Consensus Protocol

Quorum Consensus Protocol:

Total number of replica (of some item): N

Readers access at least QR copies.

Writers access at least QW copies.

To detect read/write conflicts:

→ Read set/write set must overlap.

→ QR + QW > N

To detect write/write conflicts:

→ Write set/write set must overlap.

→ QW + QW > N (⇔ 2 ·QW > N)
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Quorum Consensus Protocol

Protocol can be tuned to trade update cost ↔ availability.

Read-one/write-all: QR = 1; QW = N

Implementation:

Store commit time stamp with each object.

→ Use the latest version within the read object set.

Node unavailability is not a problem, as long as transactions can

assemble necessary quorums.

Variant of Quorum Consensus:

Set a weight wi for each replica.

Quorums must now satisfy QR + QW >
∑

i wi and 2 ·QW >
∑

i wi .
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Asynchronous Replication: Primay Copy Replication

Strategy 3: Asynchronous replication; primary copy

For each object, one replica is designated its primary copy.

All updates go to primary copy.

Updates are propagated asynchronously to secondary copies.

Reads go to any node.

Properties:

→ Asynchronous replication avoids high overhead at commit time.

→ Simple to implement: Forward write-ahead log to secondary copies.

→ Good fit for many application patterns
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Primary Copy Replication

However:

Reader might see old/inconsistent data.

Guarantee Serializability:

Run read-only transactions on secondary copy sites.

Run read/write transactions on primary copy site.

→ Reads of read/write transactions go to primary site, too.

→ Alternative: Readers wait on secondary sites if necessary.

Multi-version concurrency control → consistent reads.
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Example: Ganymed

Example: Ganymed
660 C. Plattner et al.

Fig. 2 Data flows between the dispatcher, the master and the satellites

engines. The problem of these designs is that they
assume that the middleware layer can control every-
thing happening inside the database engine. This is not
a correct assumption (concurrency control affects more
than just tables, e.g., recovery procedures, indexes). For
these approaches to work correctly, functionality such
as triggers, user-defined functions and views would have
to be disabled or the concurrency control at the mid-
dleware level would have to work at an extremely con-
servative level. In the same spirit, Ganymed imposes no
data organization, structuring of the load, or particular
arrangements of the schema (unlike, e.g., [18]).

In terms of the DBMSs that the architecture should
support, the objective is flexibility and, thus, we do not
rely on engine specific functionality. The design we pro-
pose does not rely on the existence of special features
or modifications to the underlying DBMS.

2.2 Overview

The system works by routing transactions through a dis-
patcher over a set of backend databases. For a given
dispatcher, the backends consist of one master and a
set of satellites. The objective is to use the satellites to
extend the master according to two principles: clients
see a consistent database at all times and the master can
take over if the satellites cannot deal with a query.

The latter point is crucial to understanding the design
of the system. In the worst case, our system behaves as
a single database: the master. When in doubt, the dis-
patcher routes the traffic to the master. We also rely
on the master to provide industrial strength (e.g., crash
recovery and fault tolerance). The idea is that the satel-
lites extend the functionality or capacity of the master
but neither replace it nor implement redundant func-
tionality. This same principle applies to the problem
of replicating triggers, user-defined functions, etc. Our
system is not meant to extend that functionality. Thus,

transactions that involve triggers or user-defined func-
tions are simply sent to the master for execution there.

A basic assumption we make is that we can achieve a
perfect partition of the load between master and
satellites. However, unlike previous work [10,26], we do
not require the data to be manually partitioned across
nodes. For the purposes of this paper, the loads we con-
sider involve full replication and specialized function-
ality (skyline queries and keyword search). For fully
replicated satellites, the master executes all write opera-
tions while the satellites execute only queries (read-only
transactions). In the case of specialized functionality the
satellites execute skyline queries and keyword searches,
all other transactions are done at the master. We also
assume that queries can be answered within a single
satellite.

2.3 Main components

The main components of the system are as follows (see
Fig. 2). The dispatcher is responsible for routing trans-
actions to the master and satellites. It acts as front end
for clients. The system is controlled and administered
from a management console. Communication with the
backend DBMSs always takes place through adapters,
which are thin layers of software installed on the DBMS
machines.

In terms of database machines, we consider three
types: masters, primary satellites, and secondary satel-
lites. Primary satellites are optional and used for
dynamic creation of satellites. The purpose of primary
satellites is to be able to create new satellites without hit-
ting the master for all the data necessary to spawn a new
satellite. When implementing dynamic satellites, there
is always one primary satellite attached to the master.
Secondary satellites are those created dynamically.1

1 In Fig. 2, PITR stands for the technique we use in our prototype
to dynamically create satellites. Please refer to Sect. 8.

Plattner et al. Extending DBMSs with Satellite Databases. VLDB Journal,

17:657–682, 2008.
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Example: GanymedExtending DBMSs with satellite databases 671

6.5.1 Performance and scalability

The first part of the evaluation analyzes performance
and scalability. The Ganymed prototype was compared
with a reference system consisting of a single
PostgreSQL instance. We measured the performance
of the Ganymed dispatcher in different configurations,
from 0 up to 5 satellites. This gives a total of seven exper-
imental setups (called PGSQL and SAT-n, 0 ≤ n ≤ 5),
each setup was tested with the three different TPC-W
traces.

The load generator was then attached to the database
(either the single instance database or the dispatcher,
depending on the experiment). During a measurement
interval of 100 s, a trace was then fed into the system
over 100 parallel client connections and at the same time
average throughput and response times were measured.
All transactions, read only and updates, were executed
in the SERIALIZABLE mode. Every experiment was
repeated until a sufficient, small standard deviation was
reached.

Figure 6 shows the results for the achieved through-
put (transactions per second) and average transaction
response times, respectively. The ratio of aborted trans-
actions was below 0.5% for all experiments.

Figure 7 shows two example histograms for the
TPC-W ordering mix workload: on the left side the ref-
erence system, on the right side SAT-5. The sharp drop
in performance in the SAT-5 histogram is due to mul-
tiple PostgreSQL replicas that did checkpointing of the
WAL (write ahead log) at the same time. The replicas
were configured to perform this process at least every
300 s; this is the default for PostgreSQL.

Based on the graphs, we can prove the lightweight
structure of the Ganymed prototype. In a relay
configuration, where only one replica is attached
to the Ganymed dispatcher, the achieved performance
is almost identical to the PostgreSQL reference sys-
tem. The performance of the setup with two replicas,
where one replica is used for updates and the other
for read-only transactions, is comparable to the sin-
gle replica setup. This clearly reflects the fact that the
heavy part of the TPC-W loads consists of complex
read-only queries. In the case of the write intensive
TPC-W ordering mix, a two replica setup is slightly
slower than the single replica setup. In the setups where
more than two replicas are used, the performance com-
pared to the reference system could be significantly
improved. A close look at the response times chart
shows that they converge. This is due to the RSI-PC
algorithm which uses parallelism for different transac-
tions, but no intra-parallelism for single transactions.
A SAT-5 system, for example, would have the same
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Fig. 7 Example histograms for the TPC-W ordering mix

performance as a SAT-1 system when used only by a
single client.

One can summarize that in almost all cases a nearly
linear scale-out was achieved. These experiments show
that the Ganymed dispatcher was able to attain an
impressive increase in throughput and reduction of
transaction latency while maintaining the strongest
possible consistency level.

It must be noted that in our setup all databases were
identical. By having more specialized index structures
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Scenarios

Scenarios for asynchronous replication:

Data Warehousing:

→ Propagate changes from transactional system to warehouse

(e.g., periodically).

Specialized Satellites:

→ Satellite systems need not be identical to primary copy.

→ Build specialized indexes on satellites.

→ Use different data organization (e.g. column store)

→ etc.

Hot Standby:

→ Secondary provides an up-to-date copy of all data.

→ Swap primary ↔ secondary in case of failure.
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Asynchronous Replication: Group Replication

Strategy 4: Asynchronous replication; group replication

Allow updates on any replica and propagate afterward.

Site A Site B Site C Site D

T1
update x

T2
update x

propagate propagate

tim
e

→ Consistency?
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Group Replication

Conflicting updates might arrive at a site.

Need a conflict resolution mechanism.

E.g., assign time stamps to updates and let latest win.

→ Replicas will eventually contain the same value.

→ No serializability, however.

(E.g., lost updates are still possible.)

Sometimes, user-defined conflict resolution makes sense.

→ E.g., accumulate value increments.
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Brewer’s CAP Theorem

We’ve seen multiple trade-offs between

Consistency

In the database domain, we’d like to have ACID guarantees.

Availability

Every request received by a non-failing node should result in a

response.

Partition Tolerance

No set of failures less than a total network outage should cause the

system to respond incorrectly.
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Brewer’s CAP Theorem

In a PODC keynote 2000, Eric Brewer stated the “CAP Theorem”:

In a distributed computer system it is impossible

to provide all of the three guarantees

Consistency,

Availability, and

Partition Tolerance.

Notes:

Here, “consistency” means “linearizability,” a criterion usually used

in the distributed systems community.
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CAP Theorem

Two of the three CAP properties can be achieved together:

Consistency and Availability (drop Partition Tolerance)

Many of the techniques we discussed with provide consistency and

availability, but they will fail when a partition happens.

Consistency and Partition Tolerance (drop Availability)

E.g., always enforce consistency; deny service when nodes do not

respond.

Availability and Partition Tolerance (drop Consistency)

System might become inconsistent when a partition happens; e.g.,

“group replication” discussed above.

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 457



CAP Theorem—Proof

Proof by contradiction; assume

System provides all three properties.

Two nodes G1 and G2 in separate partitions

→ G1 and G2 cannot communicate.

Initially, the value of v is v0 on all nodes.

1 A write occurs on G1, updating v0 → v1.

→ By the availability assumption, this write completes.

2 A later read occurs on G2.

→ Read will complete (availability), but return old value v0.

� Consistency is violated.

(Or, to ensure consistency, either the read or the write would have

to block because of the network partition.)
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Consequences

So, since we cannot have all three. . .

. . . drop partition tolerance?

→ What does this mean?

We can try to improve network reliability; but partitions might still

occur. And if a partition happens, what will be the consequence?

. . . drop availability?

→ A (generally) unavailable system is useless.

→ In practice: loss of availability ≡ loss of money.

. . . drop consistency?

→ DB people really don’t like to give up consistency. ©

→ Yet, it’s best understood and can typically be handled.
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Consequences

Trade-off:

availability ↔ consistency ?

Systems that sacrifice consistency tend to do so all the time.

Availability only given up when partitioning happens.

Many systems, strictly speaking, even give up both!

→ Improve latency by doing so.
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BASE Properties

Many large-scale distributed systems follow the BASE principles:

Basically Available,

→ Prioritize availability

Soft State,

→ Data might change (without user input); e.g., to reach

consistency.

Eventually Consistent.

→ System might be inconsistent at times, but “eventually” reach

a consistent state (; group replication)
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Amazon Dynamo

An example of the (new) availability ↔ consistency trade-off is

Amazon’s Dynamo26.

Situation at Amazon:

Service-oriented architecture, decentralized

→ Page request results in ≈ 150 service requests.

→ Need stringent latency bounds (; look at 99.9th percentile).

Availability is top priority

→ Everything else is a lost selling opportunity.

→ CAP theorem: “drop consistency”

→ Choose asynchronous replication, no primary copy

→ Need conflict resolution strategy

26DeCandida et al. Dynamo: Amazon’s Highly Availabe Key-value Store. SOSP ’07.
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Fragmentation and Allocation in Dynamo

Hash all key values into the

range [0, 1[ (; treat as a ring).

Nodes are placed at random

positions [0, 1[.

Place an object o = 〈k , v〉 on

the node that follows hash(k)
clockwise.

→ Place on next N nodes for

replication factor N.

When a node H joins/leaves:

→ Copy data from/to node

that precedes/follows H.

A

B

C

D

E

F

G

0· · ·hash
va

lu
es···

· · ·1

stored
on B

stored
on B*

*stored on B, C , D if
replication factor is 3
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Consistent Hashing; Virtual Nodes

Advantages:

Resilience to skew

Easy to scale (add/remove nodes to ring)

Problem:

Hot spot when a node joins/leaves, or in case of node failure.

Thus:

Let each physical machine represent multiple nodes in the ring (;
“virtual nodes”); position all (virtual) nodes randomly in the ring.

→ Every (physical) machines neighbors with multiple others.

→ Avoid hot spots.

→ Stronger hardware → more positions in the ring.
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Replication and Consistency

Dynamo uses a variant of quorum consensus to realize replication.

Starting from an object o’s hash value hash(k), the first N (virtual)

nodes that follow clockwise hold replicas of o.27

These N nodes are called the preference list for k .

Read/write objects according to quorums QR /QW (↗ slide 445).

Use QR and QW to tune for application needs.

→ Typical values: N = 3, QR = QW = 2.

→ Read-mostly applications: QW = N, QR = 1.

27Actually, choose replica nodes such that replicas end up on different machines.
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Hinted Handoff

Problem: Quorum may be unreachable because of failures.

→ “partition tolerance”

Thus: Use first N healthy nodes for read/write operations.

E.g.,

Quorum: N = 3; QR = QW = 2

Key h hashes between A and B

C and D are unavailable

Send write to B, E , and F .

→ The latter two with a hint

→ E and F will attempt to deliver

the update to C and D.

A

B

E

F

G

C

D

hash(k)
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Inconsistencies / Conflict Resolution

Hinted handoff may lead to inconsistencies.

Conflict resolution: Latest update wins?

→ Risk of lost updates (↗ slide 454)

Thus:

Track causality and resolve conflicts automatically.

; syntactic reconciliation

Otherwise defer conflict resolution to application.

; semantic reconciliation
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Data Versioning / Vector Clocks

Data Versioning:

With each stored object, keep version information.

Version information: vector of timestamp counters x = (x1, . . . , xk)

→ One vector position for each node in the system

→ “vector clock”

Multiple versions of the same object may be in the system at the

same time.

→ A get () operation returns all of them, together with their

vector clock.

→ Reconcile them after the read; generate new vector clock; and

write back new version.
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Read/Write Operations

E.g., read/write combination executed on node m:

/* Read (all) old versions */

1 {〈x1, value1 〉, 〈x2, value2 〉, . . . , 〈xn, valuen〉} ← get (key) ;

/* Reconcile */

2 〈x, value〉 ← reconcile ( {〈x1, value1 〉, . . . , 〈xn, valuen〉} ) ;

/* Increment vector clock x at position m */

3 x[m]← x[m] + 1 ;

/* Write back new version (with new vector clock x) */

4 put (x, key, value) ;

© Jens Teubner · Architecture & Implementation of DBMS · Summer 2018 469



Reconciliation

Causality:

Given two vector clocks x = (x1, . . . , xk) and y = (y1, . . . , yk),

∀i = 1, . . . , k : xi ≤ yi ⇒ x� y ,

i.e., y descends from x.

x� y means there is a causal relation from x to y.

→ x “older” than y and can be discarded (syntactic reconciliation).

If neither x� y nor y� x, they are a result of parallel updates.

→ Semantic reconciliation necessary.

New vector clock: Use max(xi , yi) for each vector position i .
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Vector Clocks: Example

value1
{〈Sx , 1〉}

original version

value2
{〈Sx , 2〉}

update on Sx

value3
{〈Sx , 2〉, 〈Sy , 1〉}

update on Sy

value4
{〈Sx , 2〉, 〈Sz , 1〉}parallel

update on Sz

value5
{〈Sx , 2〉, 〈Sy , 2〉,
〈Sz , 1〉}

reconciled and

updated on Sy

Conflict detected during last update:

Node Sy reads value3 and value4 with their version clocks.
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Implementation Issues

Coordinators:

Choose a “coordinator” to handle update of an object o.

→ One of the nodes in o’s preference list.

Dynamo lives in a trusted environment.

→ Link storage node interaction directly into client application.

Vector Clocks:

Few coordinators for every object o

→ Version vector sparse (most counters are 0)

→ Implement as list of 〈node, counter〉 pairs

Vector sizes will grow over time

→ Limit number of list entries (e.g., 10 entries)

→ Truncate vector clocks if necessary
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Vector Clock Truncation

In practice, parallel/conflicting versions are rare

→ Truncating vector clocks won’t actually hurt.

E.g., Live trace over 24 hours at Amazon:

99.94 % requests saw 1 version

0.00057 % saw 2 versions

0.00047 % saw 3 versions

0.00009 % saw 4 versions
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Ring Membership / Replica Synchronization

Ring Membership:

Propagate membership information through gossip-based protocol.

→ Avoid single point of failure

→ Node arrival or departure announced explicitly in Dynamo

Replicas might still go out of sync:

E.g., hinted handoff: backup node goes offline before it can forward

updates to final destination (↗ slide 466)

Use Merkle trees to check/re-establish consistency:

Only little data exchange necessary to locate inconsistencies.
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Merkle Trees

Tree of hashes, which cover the key space below them:

a0 a1 a2 a3 a4 a5 a6 a7 a8
key space

h([a0, a1])

h([a1, a2])

h([a2, a3])

h([a3, a4])

h([a4, a5])

h([a5, a6])

h([a6, a7])

h([a7, a8])

h([a0, a2]) h([a2, a4]) h([a4, a6]) h([a6, a8])

h([a0, a4]) h([a4, a8])

h([a0, a8])
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Dynamo Performance

Performance criterion:

Strong latency guarantees

e.g., SLA: 99.9 % of all requests must execute within 300 ms.

→ Average performance is not the primary criterion here.
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Dynamo Performance

Buffered Writes: trade durability ↔ performance

Compromise: Force flush on only one node (out of the QW ).
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Partitioning and Placement on Storage Nodes

Strategy 1: (as discussed before)

Place (virtual) nodes randomly in key space

→ Partitioning and placement are intertwined.

Simple to scale on paper, harder to do in practice:

→ Data must be moved when nodes are added/removed

→ Since partitioning changes, everything has to be re-computed:

data to move, Merkle trees, etc.

→ Data archival for changing key ranges?
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Partitioning and Placement on Storage Nodes

Strategy 2: (equi-sized partitions; random tokens for each storage node)

Generate random ring positions for each (virtual) node, as before.

Static partitioning; Q equi-sized partitions.

→ Use partition end to determine preference list

→ All keys in one partition reside on same node

Strategy 3: (deployed meanwhile at Amazon)

Equi-sized partitions; assign partitions (randomly) to nodes.

→ Randomly distribute/“steal” partitions when a node

leaves/joins.

Partitioning now simple and fixed

→ Data structures for one partition don’t change, just have to be

moved (e.g., when nodes leave/join, or for backup).

→ Membership information more compact to represent.
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Partitioning/Placement Strategies
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Evaluation of Partitioning/Placement Strategies

evaluate the skew in their load distribution while all strategies use 
the same amount of space to maintain their membership 
information. For instance, in strategy 1 each node needs to 
maintain the token positions of all the nodes in the ring and in 
strategy 3 each node needs to maintain the information regarding 
the partitions assigned to each node. 

In our next experiment, these strategies were evaluated by varying 
the relevant parameters (T and Q). The load balancing efficiency 
of each strategy was measured for different sizes of membership 
information that needs to be maintained at each node, where Load 
balancing efficiency is defined as the ratio of average number of 
requests served by each node to the maximum number of requests 
served by the hottest node. 

The results are given in Figure 8. As seen in the figure, strategy 3 
achieves the best load balancing efficiency and strategy 2 has the 
worst load balancing efficiency. For a brief time, Strategy 2 
served as an interim setup during the process of migrating 
Dynamo instances from using Strategy 1 to Strategy 3. Compared 
to Strategy 1, Strategy 3 achieves better efficiency and reduces the 
size of membership information maintained at each node by three 
orders of magnitude. While storage is not a major issue the nodes 
gossip the membership information periodically and as such it is 
desirable to keep this information as compact as possible.  In 
addition to this, strategy 3 is advantageous and simpler to deploy 
for the following reasons: (i) Faster bootstrapping/recovery: 
Since partition ranges are fixed, they can be stored in separate 
files, meaning a partition can be relocated as a unit by simply 
transferring the file (avoiding random accesses needed to locate 
specific items). This simplifies the process of bootstrapping and 
recovery. (ii) Ease of archival: Periodical archiving of the dataset 
is a mandatory requirement for most of Amazon storage services. 
Archiving the entire dataset stored by Dynamo is simpler in 
strategy 3 because the partition files can be archived separately. 
By contrast, in Strategy 1, the tokens are chosen randomly and,  
archiving the data stored in Dynamo requires retrieving the keys 
from individual nodes separately and is usually inefficient and 
slow. The disadvantage of strategy 3 is that changing the node 
membership requires coordination in order to preserve the 
properties required of the assignment.  

6.3 Divergent Versions: When and  
How Many? 
As noted earlier, Dynamo is designed to tradeoff consistency for 
availability. To understand the precise impact of different failures 
on consistency, detailed data is required on multiple factors: 
outage length, type of failure, component reliability, workload etc. 
Presenting these numbers in detail is outside of the scope of this 
paper. However, this section discusses a good summary metric:  
the number of divergent versions seen by the application in a live 
production environment.  

Divergent versions of a data item arise in two scenarios. The first 
is when the system is facing failure scenarios such as node 
failures, data center failures, and network partitions. The second is 
when the system is handling a large number of concurrent writers 
to a single data item and multiple nodes end up coordinating the 
updates concurrently. From both a usability and efficiency 
perspective, it is preferred to keep the number of divergent 
versions at any given time as low as possible. If the versions 
cannot be syntactically reconciled based on vector clocks alone, 
they have to be passed to the business logic for semantic 
reconciliation. Semantic reconciliation introduces additional load 
on services, so it is desirable to minimize the need for it.  

In our next experiment, the number of versions returned to the 
shopping cart service was profiled for a period of 24 hours.  
During this period, 99.94% of requests saw exactly one version; 
0.00057% of requests saw 2 versions; 0.00047% of requests saw 3 
versions and 0.00009% of requests saw 4 versions. This shows 
that divergent versions are created rarely.  

Experience shows that the increase in the number of divergent 
versions is contributed not by failures but due to the increase in 
number of concurrent writers. The increase in the number of 
concurrent writes is usually triggered by busy robots (automated 
client programs) and rarely by humans. This issue is not discussed 
in detail due to the sensitive nature of the story.  

6.4 Client-driven or Server-driven 
Coordination 
As mentioned in Section 5, Dynamo has a request coordination 
component that uses a state machine to handle incoming requests. 
Client requests are uniformly assigned to nodes in the ring by a 
load balancer. Any Dynamo node can act as a coordinator for a 
read request. Write requests on the other hand will be coordinated 
by a node in the key’s current preference list. This restriction is 
due to the fact that these preferred nodes have the added 
responsibility of creating a new version stamp that causally 
subsumes the version that has been updated by the write request. 
Note that if Dynamo’s versioning scheme is based on physical 
timestamps, any node can coordinate a write request. 

An alternative approach to request coordination is to move the 
state machine to the client nodes. In this scheme client 
applications use a library to perform request coordination locally. 
A client periodically picks a random Dynamo node and 
downloads its current view of Dynamo membership state. Using 
this information the client can determine which set of nodes form 
the preference list for any given key. Read requests can be 
coordinated at the client node thereby avoiding the extra network 
hop that is incurred if the request were assigned to a random 
Dynamo node by the load balancer. Writes will either be 
forwarded to a node in the key’s preference list or can be 
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different strategies for system with 30 nodes and N=3 with
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