1 Serializability

The transactions T_1, T_2 and T_3 shall be executed concurrently. For this purpose a database management system utilizing the two-phase locking protocol is used. The transactions are processed using a round-robin strategy ($T_1, T_2, T_3, T_1, ...$), which executes one transaction step for a transaction T_i at a time.

Transaction step

1. Retrieve the next read/write operation $\text{op}(X)$ of T_i.
2. If T_i does not hold the lock for X: $\text{lock}(X)$.
3. Execute $\text{op}(X)$.
4. Enter the release-phase as soon as possible and perform for each object Y, not used by T_i anymore, $\text{unlock}(Y)$.

If a lock can not be granted for a transaction, the transaction step will be aborted and the transaction acquires the lock in the next regular step where the lock is free.

Assignments

1. Determine the schedule S the DBMS is going to use in order to execute the transactions.
2. Determine all conflicts in the conflict relation of S.
3. To which serial plan is S conflict-equivalent?
2 Classes of Schedules

Let

- S_{ser} denote the set of all serial schedules.
- S_{csb} denote the set of all conflict-serializable schedules.
- S_{2PL} denote the set of all schedules which can be generated by a 2PL scheduler.

Two sets can be in various relationships to each other, for example by inclusion ($S_x \subset S_y$), non-empty intersection ($S_x \cap S_y \neq \emptyset$) or disjunction ($S_x \cap S_y = \emptyset$).

Show for each of the following pairs how the relate to each other.

1. S_{ser} and S_{csb}
2. S_{csb} and S_{2PL}