
Architecture & Implementation of DBMS
Summer semester 2018

Prof. Dr. Jens Teubner · DBIS Group

Exercise 7
Released: June 5, 2018 · Discussion: June 11, 2018

In this exercise we want to show the usage and efficiency of bitmap indices using the TPC-H
benchmark.

In order to solve the assignments you need to download the archive code.zip and lineitem.tbl.zip.
During the course of the exercise you shall use and complement the C++ source code given in
code.zip. For testing you might use the archive lineitem.tbl.zip.

1 Queries
As a start we want to evaluate simple queries on the table lineitem of the benchmark.

For this the provided source code declares four functions query1 (), query2 (), query3 (),
query4 which are partially implemented.

1. Use the data generator to generate a file lineitem.tbl and compile the provided source
code.
Now you can start the program rawDB. It reads in the file lineitem.tbl and represent it
as table in memory. Then it will execute the four queries while measuring their processing
time.

2. Add the missing implementations for the functions query2 (), query3 () and query4 ().
The following four queries are going to be examined.

Query 1:
SELECT COUNT (*)

FROM lineitem
WHERE linenumber = 3 OR linenumber = 5

Query 2:

SELECT COUNT (*)
FROM lineitem
WHERE linenumber = 5 AND shipmode = ‘RAIL’ AND quantity = 10

Query 3:

SELECT COUNT (*)
FROM lineitem
WHERE linenumber IN (2, 4) AND shipmode IN (‘SHIP’, ‘TRUCK’)

1



Query 4:

SELECT SUM (extendedprice * (1.0 - discount / 100.0))
FROM lineitem
WHERE returnflag = ‘R’ AND shipmode IN (‘REG AIR’, ‘AIR’)
AND quantity BETWEEN 5 AND 10

2 Bitmap Indexing
A framework for using bitmap indices is already provided in the code archive. The entry point
for the framework is the class BitmapIndex<T>, which is parameterized by the type T of the
column to be indexed.

class BitmapIndex<T> {
BitmapIndex (FieldType<T> fieldType, uint32_t numrows);
uint32_t buildIndex (lineitem_t *inputtable);
const BitVector & getBitVector (const T & fieldValue);

};

The function buildIndex () is used to read a column and create a bitmap index on it. It re-
turns the number of used 32 bit words. The function getBitVector () returns the corresponding
bit vector for a given attribute value.

A new bitmap index can be created as follows (e. g. for a column of type char[11]):

FieldType<char[11]> field_shipmode (10, offsetof (lineitem_t, shipmode));
BitmapIndex<char[11]> bitmap_idx_shipmode (field_shipmode, numrows);
uint32_t numWords = bitmap_idx_shipmode.buildIndex (inputtable);

Here 10 denotes the cardinality of the corresponding column. 1

1The column shipmode only contains fixed values. For that the code maps the corresponding strings to unique
numbers between 0 and 9.

2



Afterwards the query 1 for example can be rewritten using a bitmap index:

uint32_t
query1_with_index (...)
{

const BitVector & vec_ln3 = bitmap_idx_linenumber.getBitVector (3);
const BitVector & vec_ln5 = bitmap_idx_linenumber.getBitVector (5);
BitVector res = vec_ln3 | vec_ln5;
return res.count ();

}

3. Add the missing parts of the implementation of the bitmap index in the files PlainBitVector.cpp
and PlainBitVector.h. The lines where code has to be added are marked with /* TODO:
... */.
Following classes of the C++ standard library may be helpful for the implementation.

std::vector<T> This class provides a more flexible and powerful alternative to arrays.
It is parameterized by the type of its elements. An object of std::vector<T> can
be used like a ordinary array with the difference that the array can grow in size on
demand.

std::bitset<N> This class allows the comfortable manipulation of bit fields. So for
example it allows to directly access a bit in an array-like fashion instead of needing
shift operators.

4. After implementing the class PlainBitVector<T> now rewrite the queries two to four
to use a bitmap index. Examine the difference in efficiency when using a bitmap index
compared to not using one.

3 WAH compressed bitmap indices
The provided code is designed to provide to alternative implementations of a bitmap index. So
compiling your code with

make WAH=1

will include the class WAHBitVector instead of PlainBitVector. Former shall implement bit
vectors using the WAH compression technique.

5. Add the missing implementations in the files WAHBitVector.h and WAHBitVector.cpp.
The lines where code has to be added are annotated like in the previous assignment.
Do not forget to compile your code with make WAH=1 so that your code will be executed
actually.

6. Compare the measured numbers (Memory consumption and performance) with and wi-
thout using bitmap indices as well as with and without compression.

3



Hints
The program also prints the result of queries. They are not relevant for this exercise but might
help to check the correctness of your implementation.

Logical operators in particular belong to the implementation of bitmap indices. They can
be executed very efficiently on WAH compressed bit vectors. The respective algorithms can be
found in [1].

The program dbgen allows to create huge data sets. So a table with scaling factor 2 (2 GB
in size) can be created with dbgen -vf -s 2 -T L.

Literatur
[1] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap indices with efficient

compression. ACM Transactions on Database Systems (TODS), 31(1):1–38, March 2006.

4


