Information Systems
(Informationssysteme)

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2017
Part V

The Relational Data Model
The Relational Model

The relational model was proposed in 1970 by Edgar F. Codd:

“The term relation is used here in its accepted mathematical sense. Given sets S_1, S_2, \ldots, S_n (not necessarily distinct), R is a relation of these n sets if it is a set of n-tuples each of which has its first element from S_1, its second element from S_2, and so on.”

In other words, a relation R is a subset of a **Cartesian product**

$$R \subseteq S_1 \times S_2 \times \cdots \times S_n.$$

R contains n-tuples, where the ith field must take values from the set S_i (S_i is the ith **domain** of R).

Relations are Sets of Tuples

A relation is a **set of** n-**tuples**, e.g., representing cocktail ingredients:

$$
\text{Ingredients} = \{ \langle \text{“Orange Juice”} , 0.0 , 12 , 2.99 \rangle, \\
\langle \text{“Campari”} , 25.0 , 5 , 12.95 \rangle, \\
\langle \text{“Mineral Water”} , 0.0 , 10 , 1.49 \rangle, \\
\langle \text{“Bacardi”} , 37.5 , 3 , 16.98 \rangle \}
$$

Relations can be illustrated as **tables**:

<table>
<thead>
<tr>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Orange Juice</td>
</tr>
<tr>
<td>Campari</td>
</tr>
<tr>
<td>Mineral Water</td>
</tr>
<tr>
<td>Bacardi</td>
</tr>
</tbody>
</table>

→ Each column must have a **unique name** (within one relation).
A relation consists of two parts:

1. **Schema**: The schema of a relation is its list of attributes:

 \[
 \text{sch}(\text{Ingredients}) = (\text{Name}, \text{Alcohol}, \text{InStock}, \text{Price})
 \]

 Each attribute has an associated domain that specifies valid values for that column:

 \[
 \text{dom}(\text{Alcohol}) = \text{DECIMAL}(3,2)
 \]

 Often, key constraints are considered part of the schema, too.

2. **Value** (or instance): The value/instance \(\text{val}(R) \) of a relation \(R \) is the set of tuples (rows) that \(R \) currently contains.
Sets of Tuples

Relations are **sets of tuples**:

- The **ordering** among tuples/rows is **undefined**.
- A relation **cannot contain duplicate rows**.
 → A consequence is that every relation has a key. Use the set of all attributes if there is no shorter key.
Atomic Values

Attribute domains must be **atomic:**

- Column entries must not have an internal structure or contain “multiple values”.
- A table like

<table>
<thead>
<tr>
<th>Ingredients</th>
<th></th>
<th>SoldBy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>Alcohol</td>
<td>Supplier</td>
</tr>
<tr>
<td></td>
<td>Orange Juice</td>
<td>0.0</td>
<td>A&P Supermarket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shop Rite</td>
</tr>
<tr>
<td></td>
<td>Campari</td>
<td>25.0</td>
<td>Joe’s Liquor Store</td>
</tr>
</tbody>
</table>

is **not** a valid relation.
Since relations are sets in the mathematical sense, we can use mathematical formalisms to reason over relations.

In this course we will use

- **relational algebra** and
- **relational calculus**

to express queries over relational data.

Both are used *internally* by any decent relational DBMS.

- Knowledge of both languages will help in understanding SQL and relational database systems in general.
Relational Algebra

In mathematics, an **algebra** is a system that consists of
- a **set** (the carrier) and
- **operations** that are closed with respect to the set.

In the case of **relational algebra**,
- the **carrier** is the **set of all finite relations**.
- We’ll get to know its **operations** in a moment.

Algebraic operators are **closed** with respect to their set.
- Every operator takes as input one or more relations
 (The number of input operands to an operator \(f \) is called the **arity** of \(f \).)
- The output is again a relation.

Operators and relations can be **composed** into **expressions** (or **queries**).
The **selection** σ_p selects a **subset** of the tuples of a relation, namely those which satisfy the **predicate** p.

Selection acts like a **filter** on its input relation.

Selection leaves the **schema** of the relation unchanged:

$$\text{sch}(\sigma_p(R)) = \text{sch}(R)$$

This best compares to the **WHERE** clause in SQL.
The **predicate** \(p \) is a Boolean expressions composed of

- literal **constants**,
- **attribute names**, and
- **arithmetic** (\(+, -, \ast, \ldots\)), **comparison** (\(=, >, \leq, \ldots\)), and
 Boolean operators (\(\land, \lor, \neg\)).

\(p \) is evaluated for each tuple in isolation.

→ **Quantifiers** (\(\exists, \forall\)) or **nested relational algebra expressions** are **not** permitted within predicates.
Relational Algebra: Projection

The **projection** \(\pi_L \) eliminates all **attributes** (columns) of the input relation but those listed in the **projection list** \(L \).

\[
\pi_{A,C} \begin{pmatrix}
A & B & C \\
1 & 3 & 2 \\
1 & 3 & 5 \\
2 & 5 & 2 \\
\end{pmatrix} =
\begin{pmatrix}
A & C \\
1 & 2 \\
1 & 5 \\
2 & 2 \\
\end{pmatrix}
\]

- Intuitively: “\(\sigma_p \) discards rows; \(\pi_L \) discards columns.”
- Database slang: “All attributes not in \(L \) are **projected away**.”
- Projection can also be used to **re-order** columns.
- Projection affects the **schema**: \(\text{sch}(\pi_L(R)) = L \).
 (All attributes listed in \(L \) must exist in \(\text{sch}(R) \)).
Projection might **change** the cardinality (*i.e.*, the number of rows) of a relation.

Remember that relations are **duplicate-free sets**!
Often, π_L is used also to express **additional functionality** (needed, e.g., to implement SQL):

- **Column renaming:**

 $$\pi_{B_1 \leftarrow A_{i_1}, \ldots, B_k \leftarrow A_{i_k}} (R) .$$

- **Computations:**

 $$\pi_{Name, Value \leftarrow \text{InStock} \ast \text{Price}} (\text{Ingredients}) .$$

Alternatively, a separate **re-naming operator** ϱ_L is often seen to express such functionality, e.g.,

$$\varrho_{B_1 \leftarrow A_{i_1}, \ldots, B_k \leftarrow A_{i_k}} (R) .$$

Often, ‘:’ is used instead of ‘\leftarrow’ (e.g., $\varrho_{B_1: A_{i_1}, \ldots, B_k: A_{i_k}} (R)$).
Relational Algebra: Projection and SQL

In SQL, duplicate rows are not eliminated automatically.

→ Request duplicate elimination explicitly using keyword DISTINCT.

```sql
SELECT DISTINCT Alcohol, InStock
FROM Ingredients
WHERE Alcohol = 0
```

In SQL, projection is expressed using the `SELECT` clause:

\[
\pi_{B_1 \leftarrow E_1, \ldots, B_k \leftarrow E_k}(R)
\]

\[\downarrow\]

```sql
SELECT DISTINCT E_1 AS B_1, \ldots, E_k AS B_k
FROM R
```
Relational Algebra: Cartesian Product

The **Cartesian product** of two relations R and S is computed by concatenating each tuple $r \in R$ with each tuple $s \in S$.

\[
\begin{array}{ccc}
A & B & C & D \\
1 & 3 & 7 & 2 \\
2 & 5 & 3 & 4 \\
\end{array}
\times
\begin{array}{ccc}
 & & \\
1 & 3 & 7 & 2 \\
2 & 5 & 3 & 4 \\
\end{array}
= \begin{array}{cccc}
A & B & C & D \\
1 & 3 & 7 & 2 \\
1 & 3 & 3 & 4 \\
2 & 5 & 7 & 2 \\
2 & 5 & 3 & 4 \\
\end{array}
\]

The Cartesian product contains all columns from both inputs:

\[\text{sch}(R \times S) = \text{sch}(R) + \text{sch}(S).\]

→ R and S must not share any attribute names.

→ If they do, need to **re-name** first (using π/ρ).
We already learned how a Cartesian product can be expressed in SQL:

```sql
SELECT *
FROM R, S
```

- SQL systems will not care about the duplicate column names. (In fact, they allow, e.g., computed values with no column name at all.)
- Unique column names will be *generated* by the system if necessary.
Relational Algebra: Set Operations

The two **set operators** \cup (**union**) and $-$ (**set difference**) complete the set of relational algebra operators:

\[A \cup B = \begin{array}{cc}
1 & 3 \\
1 & 4 \\
2 & 5 \\
3 & 2 \\
\end{array} \]

\[A - B = \begin{array}{cc}
1 & 3 \\
1 & 4 \\
2 & 5 \\
3 & 2 \\
\end{array} \]
Relational Algebra: Set Operations

Notes:

- In $R \cup S$ and $R - S$, R and S must be schema compatible:

 \[\text{sch}(R \cup S) = \text{sch}(R - S) = \text{sch}(R) = \text{sch}(S). \]

- For $R \cup S$, R and S need not be disjoint.
- For $R - S$, S need not be a subset of R.
- In SQL, \cup and $-$ are available as UNION and EXCEPT, e.g.,

  ```sql
  SELECT Name
  FROM Cocktails
  UNION
  SELECT Name
  FROM Ingredients
  ```
The **five basic operations of relational algebra** are:

1. \(\sigma_p \) **Selection**
2. \(\pi_L \) **Projection**
3. \(\times \) **Cartesian product**
4. \(\cup \) **Union**
5. \(- \) **Difference**

- Any other relational algebra operator (we’ll soon see some of them) can be **derived** from those five.
- A compact set of operators is a good basis for software (e.g., query optimizers) or database theoreticians to **reason** over a query or over the language.
Monotonicity

Observe that the first four operators, σ, π, \times, and \cup, are monotonic:

- New data added to the database might only increase, but never decrease the size of their output. E.g.,

$$ R \subseteq S \Rightarrow \sigma_p(R) \subseteq \sigma_p(S) \ . $$

- For queries composed only of these operators, database insertion never invalidates a correct answer.

- Difference ($-$) is the only non-monotonic operator among the basic five.
Monotonicity

For queries with a **non-monotonic semantics**, e.g.,

- “Which ingredients cannot be ordered at ‘Liquors & More’?”
- “Which ingredient has the highest percentage of alcohol?”
- “Which supplier offers all ingredients in the database?”

the operators $\sigma, \pi, \times, \cup$ are **not sufficient** to formulate the query. Such queries **require** set difference.

✏️ **Formulate the first of these queries in relational algebra.**
The combination $\sigma \times$ occurs particularly often.

→ The $\sigma \times$ pair can be used to **combine** data from multiple tables, in particular by following **foreign key relationships**.

Example:

$$\sigma_{\text{ContactPersons}.\text{ContactFor} = \text{Suppliers}.\text{SuppID}} (\text{Suppliers} \times \text{ContactPersons})$$

Because of this, we introduce a **short notation** for the scenario:

$$R \Join_P S := \sigma_P (R \times S)$$

and call operation \Join_P a **join** (“R and S are joined”).
The Join Operator \bowtie_p

With a join operator, the example on the previous slide would read:

$$Suppliers \bowtie_{\text{ContactPersons. ContactFor} = \text{Suppliers. SuppID}} \text{ ContactPersons}$$

or (omitting redundant relation names in the predicate):

$$Suppliers \bowtie_{\text{ContactFor} = \text{SuppID}} \text{ ContactPersons}$$

The basic join operator exactly expands to a $\sigma \times$ combination as shown on the previous slide!
The join operator could be used to express any predicate over R and S (though this tends to be not so meaningful in practice).

\[
\text{Ingredients} \Join_{\text{Flavor} \leq \text{Email} \land \text{Alcohol} < 10} \text{ContactPersons}
\]

The pattern

\[
R \Join_{A_i \theta B_j} S,
\]

where A_i is an attribute from R, B_j an attribute from S, and $\theta \in \{=, \neq, <, \leq, >, \geq\}$ is often called a θ join (theta join).

The case $\theta \equiv =$ is also called an equi join.
The Natural Join

The most frequent join operation is an (equi) join that follows a **foreign key constraint**.

It is good practice to use the **same attribute name** for a **primary key** and for **foreign keys** that reference it.

E.g.,

<table>
<thead>
<tr>
<th>Cocktails</th>
</tr>
</thead>
<tbody>
<tr>
<td>CockID</td>
</tr>
<tr>
<td>:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlassID</td>
</tr>
<tr>
<td>:</td>
</tr>
</tbody>
</table>

(where **GlassID** in **Cocktails** references the **GlassID** in **Glasses**).
The Natural Join

To simplify notation for that common case, we introduce the following convention:

If no explicit predicate is given in the join operator, we interpret this as

- an **equi join** over **all pairs of columns that have the same name**

and

- the column used for joining is only reported **once** in the join result.

We call this situation a **natural join**.
The Natural Join

Based on the example schema on slide 109, the natural join

\[\textit{Cocktails} \Join \textit{Glasses} \]

would perform the (intuitively expected) join over GlassID columns (\(\textit{Cocktails.GlassID} = \textit{Glasses.GlassID} \)) and have the return schema

<table>
<thead>
<tr>
<th>CockID</th>
<th>CName</th>
<th>Alcohol</th>
<th>GlassID</th>
<th>GlassName</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The example worked out, because I used different column names for all non-join attributes. Otherwise, \(\Join \) would have implicitly joined over, \(e.g., \textit{Name} \), too.
Consider the join expression

Suppliers \texttimes\ ContactPersons,

where we assume that ContactPerson has a foreign key SupplID (and no other column pairs with same name exist).

The query will report \textbf{all suppliers with their contact person}.

But:

\begin{itemize}
 \item Suppliers where \textbf{no contact person} is stored in ContactPersons will not appear in the result. The join effectively implies a \textbf{filtering behavior}.
\end{itemize}
Sometimes, this **filtering behavior** is **everything we really need** from the join operation.

E.g., “All suppliers where we know a contact person.”

\[
\pi_{\text{Suppliers.}*\left(\text{Suppliers } \bowtie \text{ ContactPersons}\right)},
\]

For this situation, database people introduced another explicit notation:

\[
R \bowtie S := \pi_{\text{sch}(R)}(R \bowtie S) \quad R \bowtie_p S := \pi_{\text{sch}(R)}(R \bowtie_p S),
\]

i.e., compute the join \(R \bowtie S \), but keep only columns that come from \(R \).

This operation is also called a **semi join**.
What if I want the opposite, all suppliers where we do not know a contact person?
In other cases, the filtering effect is not desired.

To obtain all suppliers with their contact person without discarding *Supplier* tuples, use the outer join (here: left outer join):

\[
\text{Suppliers} \Join \text{ContactPersons}
\]

Assuming the input:

<table>
<thead>
<tr>
<th>Suppliers</th>
<th></th>
<th>ContactPersons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SupplID</td>
<td>SuppName</td>
<td>SupplID</td>
<td>ContactName</td>
</tr>
<tr>
<td>1</td>
<td>Shop Rite</td>
<td>1</td>
<td>Mary Shoppings</td>
</tr>
<tr>
<td>2</td>
<td>Liquors & More</td>
<td>3</td>
<td>Joe Drinkmore</td>
</tr>
<tr>
<td>3</td>
<td>Joe’s Liquor Store</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the result of the above left outer join?
Division

For certain kinds of queries, the **division** operator is useful.

Given two relations

\[
\begin{array}{c|c}
R & S \\
\hline
A & B \\
\vdots & \vdots \\
\end{array}
\quad \text{and} \quad
\begin{array}{c}
S \\
B \\
\vdots \\
\end{array}
\]

the division

\[
R \div S
\]

returns those \(A\) values \(a_i\), such that for **every** \(B\) value \(b_j\) in \(S\) there is a tuple \(\langle a_i, b_j \rangle\) in \(R\).
Example

The division would be useful to, e.g., ask for suppliers that offer all ingredients:

\[Suppliers \, \Join \, (Supplies \, \div \, \pi_{IngrID}(Ingredients)) \]
Relational algebra operators may have interesting properties, e.g.,

- The join satisfies the **associativity condition**:

 \[(R \bowtie S) \bowtie T \equiv R \bowtie (S \bowtie T)\,.

 (We can thus often omit parentheses in “join chains”:\(R \bowtie S \bowtie T \).

- Join is **not commutative**, however, **unless** it is followed by a projection (to re-order columns):

 \[\pi_L(R \bowtie S) \equiv \pi_L(S \bowtie R)\,.

- If \(p\) only refers to attributes in \(S\), then

 \[\sigma_p(R \bowtie S) \equiv R \bowtie \sigma_p(S)\]

 (this is also known as **selection pushdown**).
Algebraic Expressions

Relational Algebra is an **expression-oriented language**.

→ Expressions consume and produce relations.

→ Results of expressions can be input to other expressions.

E.g.,

\[
\left(\left(\pi_{\text{IngrID}} \left(\sigma_{\text{Name}=\text{'Campari'}} \text{Ingredients} \right) \right) \bowtie \text{Supplies} \right) \bowtie \text{Suppliers}
\]

Another way of looking at this is an **operator tree**:
Such operator trees imply an **evaluation order**.

- Computation proceeds **bottom-up** (the evaluation order of sibling branches is not defined).

- Operator trees are thus a useful tool to describe **evaluation strategy and order**.
Query Plans

Most relational **query optimizers** use operator trees internally.

→ The operator tree leads to a **query plan** or **execution plan**.

→ The **execution engine** is defined by operator implementations for all of the algebraic operators.

E.g., IBM DB2 execution plan:
Plan trees can be re-written using algebraic laws:

E.g.,

- **selection pushdown**: rewrite expressions to apply selection predicates early:

 \[\sigma_p(R \Join S) \rightarrow R \Join \sigma_p(S) \]

 (we saw this algebraic law before).

- **decide join order**:

 \[\pi_L(R \Join S \Join T) \rightarrow \pi_L(T \Join (S \Join R)) \]

The rewrite direction is often guided by **heuristics** and/or **cost estimations** (Course ‘Architecture of Database Systems’).
The execution order implied by algebraic expressions gives relational algebra a **procedural nature**.

→ This is **good** for query optimization.

→ It is **not so good** for query formulation (e.g., by users).
 - Want to leave execution strategies up to the database.

For query formulation, we’d much rather like to have a **fully declarative way** to describe queries.

→ Specify **what** you want as a result, **not how** it can be computed.

→ “*I want all tuples that look like ...*” or “*I want all tuples that satisfy the predicate ...*”
Tuple Relational Calculus: Idea

In mathematics, a common way to describe sets is

\[\{ x \mid p(x) \} , \]

meaning that the set contains all \(x \) that satisfy a predicate \(p \).

This inspires the **tuple relational calculus (TRC):**

In a **tuple relational calculus query**

\[\{ t \mid F(t) \} , \]

\(t \) is a **tuple variable**, \(F \) is a **formula** that describes how tuples \(t \) must look like to qualify for the result.
Formulas form the heart of the TRC. The **language** for formulas is a subset of **first-order logic**:

An **atomic formula** is one of the following:

- $t \in \text{RelationName}$
- $t \leftarrow \langle X_1, \ldots, X_k \rangle$ (tuple constructor)
- $r.a \theta s.b$ (r, s tuple variables; a, b attributes in r, s; $\theta \in \{=, <, \ldots \}$)
- $r.a \theta \text{Constant}$ or $\text{Constant} \theta r.a$
A **formula** is then recursively defined to be one of the following:

- any atomic formula
- \(\neg F, F_1 \land F_2, F_1 \lor F_2 \)
- \(\exists t : F(t, \ldots) \)
- \(\forall t : F(t, \ldots) \)

where \(F \) and \(F_i \) are formulas and \(t \) a tuple variable.

Quantifiers \(\exists \) and \(\forall \) **bind** the variable \(t \); \(t \) may occur **free** in \(F \).

A **TRC query** is an expression of the form

\[
\{ t \mid F(t) \}
\]

where \(F \) is a formula and \(t \) is the only free variable in \(F \).
Examples

All tuples in *Ingredients* where *Alcohol* = 0:

\[\{ t | t \in Ingredients \land t.Alcohol = 0 \} \]

Names and prices of all non-alcoholic ingredients:

\[\{ t | \exists v : v \in Ingredients \land v.Alcohol = 0 \land t \leftarrow \langle v.Name, v.Price \rangle \} \]

Name all ingredients that can be ordered at ‘Shop Rite’:

\[\{ t | \exists u : u \in Suppliers \land \exists v : v \in Supplies \land \exists w : w \in Ingredients \\
\land u.Name = ‘Shop Rite’ \land u.SupplID = v.SupplID \\
\land v.IngrID = w.IngrID \land t \leftarrow \langle w.Name \rangle \} \]
Observe how Tuple Relational Calculus and SQL are related:

\[
\{ t \mid \exists u : u \in Suppliers \land \exists v : v \in Supplies \land \exists w : w \in Ingredients \\
\quad \land u.\text{Name} = 'Shop Rite' \land u.\text{SupplID} = v.\text{SupplID} \\
\quad \land v.\text{IngrID} = w.\text{IngrID} \land t \leftarrow \langle w.\text{Name} \rangle \}
\]

In SQL:

```sql
SELECT w.Name
FROM Suppliers AS u, Supplies AS v, Ingredients AS w
WHERE u.Name = 'Shop Rite' AND u.SupplID = v.SupplID
    AND v.IngrID = w.IngrID
```

© Jens Teubner · Information Systems · Summer 2017
Expressive Power

Idea:
- Use tuple relational calculus (\(\sim\) SQL) as a declarative front-end language for relational databases.

Questions:
- Can all relational algebra expressions also expressed using TRC?
- Can all TRC queries expressed using relational algebra? (That is, can all TRC queries be answered with an execution engine that implements the algebraic operators?)

Answer?
- No!
Consider the TRC query

\[\{ t \mid \neg(t \in Ingredients) \} \]

(return all tuples that are not in the Ingredients table).

- The set of tuples described by this query is infinite.\(^8\)
- Relational algebra expressions operate over (and produce) only relations of finite size.

\[\rightarrow \] The above TRC query is not expressible in relational algebra.

\(^8\)Or bound only by the (very large) domains for the attributes in Ingredients.
The query on the previous slide was an example of an unsafe TRC query.

In practice, queries with an infinite result are rarely meaningful.

Thus:

- **Restrict** TRC to allow only queries with a finite result.
 (We will refer to the set of allowed queries as the safe TRC.)

“Trick:”

- Define safe TRC based on **syntactic** restrictions on the formula language.

→ 🗣️ **Why “syntactic”?**
Safe Tuple Relational Calculus

A formula F in the tuple relational calculus is called **safe** iff

1. it contains no universal quantifiers (\forall),
2. in each $F_1 \lor F_2$, F_1 and F_2 have only one free variable and this is the *same* variable in F_1 and F_2,
3. in all maximal conjunctive sub-formulae $F_1 \land F_2 \land \cdots \land F_k$, a variable t may be used in a formula F_i only *after* it has been limited ("bound") in a formula $F_j, j < i$.

A formula F_j limits t iff

- $F_j \equiv t \in R$ or
- $F_j \equiv t \leftarrow \langle X_1, \ldots, X_k \rangle$
- t appears free in F_j and F_j itself is a safe TRC formula.

All free variables of a maximal conjunctive sub-formula must be limited.

4. negation only occurs in a conjunction as in 3.
SQL is also “safe” in that sense.

→ All tuple variables must be bound (“limited”) in the **FROM** part.

SQL is not purely based on safe TRC, but includes a combination of

- **Safe TRC**,
- **Relational Algebra**, (عائلان Which example did we already see?)
- Additional constructs, such as **aggregation**.
Equivalence of Relational Algebra and Safe TRC

Theorem

Relational algebra and safe tuple relational calculus are equivalent.

This equivalence

- guarantees **expressiveness**, *e.g.*, for SQL,
- yet allows **query compilation** into relational algebra (for query optimization and execution).

The theorem can be proven in a **constructive** way:

- Give **translation rules** that compile any safe TRC query into relational algebra and vice versa.

 → The TRC → algebra direction already instructs us how to build a **query compiler**.
Goal: A function TRC that translates any algebra expression into a Safe TRC formula.

The interesting part is to derive the formula F to construct $\{ t \mid F(t) \}$.

Thus:

- Find $\mathbb{T}(\nu, \text{Exp})$. Given the name of a variable ν and an algebraic (sub)expression Exp, $\mathbb{T}(\nu, \text{Exp})$ constructs a formula, such that

$$\text{TRC}(\text{Exp}) := \{ t \mid \mathbb{T}(t, \text{Exp}) \}$$

is the TRC equivalent for Exp and $\mathbb{T}(t, \text{Exp})$ is safe.
Example:

\[\mathbb{T}(v, R) := v \in R. \]

Then,

\[\text{TRC}(R) := \{ t \mid \mathbb{T}(t, R) \} = \{ t \mid t \in R \}. \]

Strategy: Syntax-Driven Translation:

\[\mathbb{T}(v, R) := v \in R \quad \text{(see above)} \]

\[\mathbb{T}(v, \sigma_p(Exp)) := ? \]

\[\mathbb{T}(v, \pi_L(Exp)) := ? \]

\[\mathbb{T}(v, Exp_1 \times Exp_2) := ? \]

\[\mathbb{T}(v, Exp_1 \cup Exp_2) := ? \]

\[\mathbb{T}(v, Exp_1 - Exp_2) := ? \]

(Next: Find a translation for each of the five basic algebra operators.)
\[\sigma_p(\text{Exp}) \rightarrow \text{Safe TRC} \]

Algebra \textbf{selection} operator \(\sigma_p \):

\[\top(v, \sigma_p(\text{Exp})) := \top(v, \text{Exp}) \land p(v), \]

where \(p(v) \) is the predicate \(p \) in \(\sigma_p \) and all attribute names in \(p \) are qualified using the variable name \(v \).

\[\rightarrow \] The resulting formula is \textbf{safe} if the result of the recursive construction \(\top(v, \text{Exp}) \) is safe.

Remaining rules for \(\top(v, \text{Exp}) \rightarrow \) exercises.
Goal: A function Alg that translates any safe TRC query into a valid algebra expression.

Safe TRC cannot simply be translated bottom-up, because some of its sub-formulas might be un-safe if considered in isolation.

Example: $\{ t \mid t \in R \land t \notin S \}$ is legal, but the sub-formula $t \notin S$ would violate rule 3 for safe TRC on slide 132 (and $\{ t \mid \neg (t \in S) \}$ is not expressible in relational algebra).
Thus:

Carry **context information** through the translation process with help of an auxiliary function A:

$$\text{Alg}(\{ t \mid F(t) \}) := \pi_t.\star(A(\{\}, F \land \text{true}))$$

Idea:

- As input, A receives a **partial algebra plan** (initialized with $\{\}$) and a TRC formula.
- A “consumes” a conjunctive formula $F_1 \land \cdots \land F_k$ piece-by-piece.
- The partial algebra plan is used to provide context and accumulate the overall compilation result.
- We use $\{\} \times E := E$ and $F \equiv F \land \text{true}$ to simplify compilation rules.
Let us look at simple formulas first:

\[\begin{align*}
\mathbb{A}(E, t \in R \land F) & := \mathbb{A} \left(\times \left(\pi_{t.A_1:A_1, \ldots, t.A_k:A_k}, E \right), F \right) \\
\mathbb{A}(E, t \leftarrow \langle X_1, \ldots, X_k \rangle \land F) & := \mathbb{A} \left(\pi_{\text{sch}(E), t.A_1:X_1, \ldots, t.A_k:X_k}, E \right), F \right) \\
\mathbb{A}(E, X \theta Y \land F) & := \mathbb{A} (\sigma_{X \theta Y} E, F) \\
\mathbb{A}(E, \text{true}) & := E
\end{align*} \]
Translation of

\[
\{ r \mid r \in R \land s \in S \land r.A = s.A \land s.B = 42 \}
\]

The above TRC expression is not quite correct. Why?
Looks familiar?

This is (almost) exactly how your database system compiles SQL!

```
SELECT p.*
FROM Professors AS p, Courses AS c
WHERE p.ID = c.heldBy
  AND c.courseID = 42
↓
\{ p | p ∈ Professors ∧ ∃c : c ∈ Courses ∧ p.ID = c.heldBy ∧ c.courseID = 42 \}
↓
π_{p.*}(σ_{p.courseID=42}(Professors ∩_{p.ID=c.heldBy} Courses))
```
Safe TRC → Relational Algebra

Time to complete our rule set...

\[\mathbb{A}(E, (\exists v : G) \land F) := \mathbb{A} \left(\pi_{\text{sch}(E)} \left(\mathbb{A}(E, G \land \text{true}), F \right) \right) \quad (5) \]

\[\mathbb{A}(E, (G_1 \lor G_2) \land F) := \mathbb{A} \left(\bigcup \left(\mathbb{A}(E, G_1 \land \text{true}), \mathbb{A}(E, G_2 \land \text{true}), F \right) \right) \quad (6) \]

\[\mathbb{A}(E, \neg G \land F) := \mathbb{A} \left(E \pi_{\text{sch}(E)}, F \right) \quad (7) \]
Notes:

- In Rule (5), the \exists quantifier introduces a new variable, which appears free in G. After compiling G, we “project away” the additional column(s).

- In Rule (6), both parts of the \cup must be schema-compatible, because (by rule 2 for safe TRC on slide 132) G_1 and G_2 must have the same free variable.

- Observe, in Rule (7), how we can make use of the difference operator, because we made sure that all free variables in G were bound previously (and are thus part of E).
Translation of

\[\{ r \mid r \in R \land (\exists s : s \in S \land r.A = s.A \land s.B = 42) \} \]
Suppose a database contains a *Flights* relation

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>FlightNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZRH</td>
<td>DRS</td>
<td>OL 277</td>
</tr>
<tr>
<td>DRS</td>
<td>MUC</td>
<td>LH 2127</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

where a tuple \(\langle f, t, n \rangle \) indicates that there is a flight from \(f \) to \(t \) with flight number \(n \).

The algebra expression

\[
\pi_{To} \left(\pi_{From \leftarrow To} \left(\sigma_{From = 'ZRH'} \left(Flights \right) \right) \times Flights \right)
\]

then returns airport codes for all destinations that can be reached with one stop from Zurich.
More generally, we can use an \textit{n-fold self join} to find destinations reachable with \textit{n} stops.

→ We can write down that self join for every known value of \textit{n}.

→ But it is \textbf{impossible} to express the \textbf{transitive closure} in relational algebra.

 (\textit{i.e.,} we cannot write a query that returns reachable destinations with a trip of \textbf{any} length.)

This implies that relational algebra is \textbf{not computationally complete}.

→ This might seem unfortunate. But it is a consequence of the desirable guarantee that \textbf{query evaluation always terminates} in relational algebra.
SQL is slightly more powerful than relational algebra (≡ Safe TRC), e.g.,

- **aggregation** (e.g., the SQL \texttt{COUNT} operation)
- (very limited) support for **recursion**
 Reachability queries as shown before can actually be expressed in recent versions of SQL.
- explicit support for special use cases (e.g., windowing)

These extensions have been carefully designed to keep the **termination guarantees**, however.
Wrap-Up

Relations:
- finite sets of tuples

Relational Algebra:
- expression-based query language
 - operators σ_p, π_L, \times, \cup, $-$, \cap_p, ...
 - used internally by DBMSs for optimization and evaluation

(Safe) Tuple Relational Calculus:
- declarative query language
 - $\{ t \mid F(t) \}$
 - TRC inspired the design of the SQL language

Expressiveness:
- relational algebra \subseteq safe TRC \subseteq SQL