
Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund

jens.teubner@cs.tu-dortmund.de

Summer 2014

c© Jens Teubner · Information Systems · Summer 2014 1

Part IX

XML Processing

c© Jens Teubner · Information Systems · Summer 2014 297

Limitations of the Relational Model

Suppose a shop sells digital cameras:

Products

ProdID Name Price Resol. Memory Lens

0815 SuperCam 2000 199.90 12 MP 512 MB 24mm

4200 CoolPhoto 15XT 379.98 12 MP 2 GB 22mm

4711 Foo Pix FX13 249.00 8 MP 4 GB 28mm

Or a shop might sell printers:

Products

ProdID Name Price Color Speed Resol.

1734 ePrinter R300c 499.90 yes 12 ppm 600 dpi

1924 PrintJet Duo 629.00 yes 14 ppm 1200 dpi

4448 OfficeThing VIx 299.98 no 20 ppm 600 dpi

c© Jens Teubner · Information Systems · Summer 2014 298

Limitations of the Relational Model

What if a shop sells both? Fill with null values?

Products

ProdID Name Price Resol. Memory Lens Color Speed Resol.

0815 SuperCam 2000 199.90 12 MP 512 MB 24mm – – –

1734 ePrinter R300c 499.90 – – – yes 12 ppm 600 dpi

1924 PrintJet Duo 629.00 – – – yes 14 ppm 1200 dpi

4200 CoolPhoto 15XT 379.98 12 MP 2 GB 22mm – – –

4448 OfficeThing VIx 299.98 – – – no 20 ppm 600 dpi

4711 Foo Pix FX13 249.00 8 MP 4 GB 28mm – – –

Now consider

internet stores that sell lots of different products,

multi-tenancy systems (e.g., SalesForce),

data that inherently has a flexible structure (e.g., an OPAC).

c© Jens Teubner · Information Systems · Summer 2014 299

Limitations of the Relational Model

The relational model is highly structured and regular.

→ Simple, good to optimize, efficient to implement.

→ For many use cases, also the data is like that.

But there are use cases for which this model is too rigid.

→ Would need

either many null values (as shown before) or

very complex schemas (decomposed tables).

→ Both are inefficient and error-prone.

c© Jens Teubner · Information Systems · Summer 2014 300

XML to the Rescue?

XML provides the desired flexibility, e.g.:

<products>

<camera prodId=’0815’>

<name>SuperCam 2000</name>

<price currency=’EUR’>199.90</price>

<resolution unit=’MP’>12</resolution>

<memory unit=’MB’>512</memory>

<lens>24mm</lens>

</camera>

<printer prodId=’1734’>

<name>ePrinter R300c</name>

...

</printer>

...

</products>

c© Jens Teubner · Information Systems · Summer 2014 301

XML—eXtensible Markup Language

XML is a syntax.

→ “angle brackets”,

→ character encoding and escaping, . . .

XML is also a data model.

→ Underlying model is �

the ordered, unranked tree

.

All tags must be properly nested.

→ XML comes with a complete type system.

XML Schema further allows to restrict XML instances to a

particular shape and to assign types to XML pieces.

The beauty of XML is that there’s a whole stack of XML technologies:

→ Parsing, character sets, etc. have all been taken care of.

→ Lots of tools available; clear interpretation across tools.

c© Jens Teubner · Information Systems · Summer 2014 302

XML: Ordered, Unranked Trees

XML provides an encoding for trees.

<a>

foo

<c>

<d>bar</d>

<e/>

</c>

;

a

b

foo

c

d

bar

e

Nodes in an XML tree are of different node kinds:

Element nodes (here: a, b, . . . , e) carry a name and may have any

number of children (elements and/or text nodes).

Text nodes (here: foo, bar) have an arbitrary text-only content;

text nodes do not have children.

c© Jens Teubner · Information Systems · Summer 2014 303

XML Node Kinds

In total, there are seven node kinds:

Every XML document is encapsulated by a document node.

Exactly one of its children must be an element node.

We mentioned element nodes before. Elements may have elements,

processing instructions, comments, and text nodes as children.

Element nodes may own attribute nodes, which consist of a name

and a value. Attribute names must be unique within one element.

Text nodes contain character content.

Namespace nodes contain prefix→URI bindings; they are mostly

internal to XML processors.

Processing instruction nodes are target/content pairs,

represented as <?target Content may be any string ?>.

Comment nodes contain text in (XML) comments: <!-- This is

a comment -->.

c© Jens Teubner · Information Systems · Summer 2014 304

Example

<?xml version=’1.0’ encoding=’utf-8’?>

<!-- Example from www.w3.org -->
<?xml-stylesheet type=’text/xsl’?>

<catalog xmlns=’http://www.example.com/catalog’
xmlns:xlink=’http://www.w3.org/1999/xlink’
xmlns:html=’http://www.w3.org/1999/xhtml’>

<tshirt code=’T1534017’ sizes=’M L XL’
xlink:href=’http://example.com/0,,1655091,00.html’>

<title>Staind: Been Awhile Tee Black (1-sided)</title>
<description>
<html:p>
Lyrics from the hit song ’It’s Been Awhile’ are shown in
white, beneath the large ’Flock & Weld’ Staind logo.

</html:p>
</description>
<price currency=’EUR’>25.00</price>

</tshirt>
</catalog>

c© Jens Teubner · Information Systems · Summer 2014 305

Notes

Names in XML (e.g., element or attribute names) are typically

QNames:

→ “qualified name”

→ combination of a prefix (bound to a URI) and a local name,

separated by :.

→ Namespaces may help to mix different XML dialects (e.g., an

SVG graphic inside a HTML page).

Use either double (") or single (’) quotes for attribute values.

There are exactly five pre-defined character entities: &,

', >, <, and ".

It is perfectly legal to have both, text and element children, under

the same parent (→ “mixed content”).

c© Jens Teubner · Information Systems · Summer 2014 306

Navigating Through XML Trees

XPath is a language to select/address nodes in an XML document.

Idea:

Navigate through the XML tree, like through a file system.

Example:

doc(’cat.xml’)/child::catalog/child::tshirt/descendant::html:p

XPath is a subset of XQuery

→ Use an XQuery processor to experiment with XPath.

→ My favorite: BaseX (http://www.basex.org/)

c© Jens Teubner · Information Systems · Summer 2014 307

Realization

XPath expression are built from

the path operator ‘/’

e1 / e2
≡

distinct-document-order (for . in e1 return e2)

step expressions axis::test

1 Start from the context node ‘.’.

2 Navigate along axis.

3 Return all nodes that meet the node test test.

c© Jens Teubner · Information Systems · Summer 2014 308

The Path Operator /

The / functions like a map operator.

Input (left-hand side) of the / operator must be a node sequence.

All evaluations of the right-hand expression are collected into a

single output sequence:13

→ Duplicates are removed based on node identity.

→ Output is returned in document order.

13Strictly speaking, duplicate removal and document ordering are only performed if

the right-hand expression returns only nodes.
c© Jens Teubner · Information Systems · Summer 2014 309

Step Expression axis::test

XPath defines 12 XPath axes.

→ Select nodes based on XML tree structure.

→ See next slides for all axes.

The node test test filters according to name, node kind, or type:

→ child::foo: all child nodes with tag name foo

→ child::text(): all children that are text nodes

→ ancestor::element(bar, shoeSize): all ancestor nodes with

tag name bar and XML Schema type shoeSize

→ descendant::*: all descendant nodes that have any name14

14Only elements and attributes have a name!
c© Jens Teubner · Information Systems · Summer 2014 310

XPath Axes

a

b

c

d

e f

g h

i j

k l

m

n

o p

q r

s

t

Selected node sets, assuming context node . is bound to h:

h/child::* = {i , j}
h/descendant::* = {i , j , k , l}
h/self::* = {h}
h/descendant-or-self::* = {h, i , j , k , l}
h/following-sibling::* = {m}
h/following::* = {m, n, o, p, q, r , s, t}

c© Jens Teubner · Information Systems · Summer 2014 311

XPath Axes (cont.)

a

b

c

d

e f

g h

i j

k l

m

n

o p

q r

s

t

Selected node sets, assuming context node . is bound to h:

h/parent::* = {b}
h/ancestor::* = {a, b}
h/ancestor-or-self::* = {a, b, h}
h/preceding-sibling::* = {c , g}
h/preceding::* = {c , d , e, f , g}
h/attribute::* = 〈attributes of h〉

c© Jens Teubner · Information Systems · Summer 2014 312

Complete XPath Expressions

Use output of one ‘/’ operator as input for the next.

; “path expression”

Typical ways to start a path:

Have initial context item defined by query processor

→ E.g., root of the given input document

Use built-in function to retrieve document

→ doc (URL): XQuery built-in function

→ db:open (dbname, docname): BaseX: retrieve document

docname from database dbname.

A rooted path expression requires a context item, too, but starts

from the document root associated with that context item.

→ /child::catalog/child::tshirt

(expands to ‘root(self::node())/child::catalog/...’)

c© Jens Teubner · Information Systems · Summer 2014 313

Predicate Operator [·]

Predicates can be used to filter an item sequence:

/descendant::tshirt[attribute::code = ’T1534017’]

Semantics for expr[p]:

for . in expr return

if (p) then . else ()

→ [·] binds context item ‘.’ for evaluation of p.

→ Use effective Boolean value ebv(·) to decide:

ebv(()) _ false

ebv((x, . . .)); x is a node _ true

ebv(x); x is of type xs:boolean _ x
ebv(x); x is a string _ false if x is empty, true otherwise

c© Jens Teubner · Information Systems · Summer 2014 314

Numeric Predicates

Predicates where p evaluates to a singleton numeric value are treated

in a special way:

for . at $pos in expr return

if (p = $pos) then . else ()

This is typically used for positional predicates. . .

→ .../child::exam/child::date[2]

. . . but can be used for very obscure queries, too:

→ .../descendant::train[attribute::track + 3]

→ Don’t do this!

c© Jens Teubner · Information Systems · Summer 2014 315

�
Predicate Semantics

1 [·] binds stronger than /.

�What does /descendant::*/child::*[3] return?

2 Step expressions return node sequences in document order

(“forward axes”) or reverse document order (“reverse axes”).

�What about these expressions?

descendant::a/preceding::*[3]

(descendant::a/preceding::*)[3]

descendant::a/(preceding::*)[3]

c© Jens Teubner · Information Systems · Summer 2014 316

XPath/XQuery Data Model

The basic XPath/XQuery type is the item sequence.

All sequences are flat.

→ Nested sequences are automatically flattened:

(42, ("foo", 7), "bar") _ (42, "foo", 7, "bar")

→ A one-item sequence and that item are the same: 42 ≡ (42)

→ Sequences are ordered. They may have duplicates.

Items can be nodes or atomic values.

→ Sequences can be heterogeneous.

→ Valid types as specified by XML Schema.

→ Implementations may use static typing.

Construct sequences using ‘,’ operator.

c© Jens Teubner · Information Systems · Summer 2014 317

FLWOR Expressions

Use FLWOR expressions to work with sequences:

for $product in /child::catalog/child::*

where contains ($product/attribute::sizes, "M")

order by $product/attribute::code

return $product/child::description

1 for/let clause(s)

2 where clause (optional)

3 order by clause (optional)

4 return clause

c© Jens Teubner · Information Systems · Summer 2014 318

for/let Clauses

for $var in expr :

Iterate over expr ; create one binding of $var for each item in expr .

Optional: bind a second variable to the position of $var in expr :

for $var at $pos in expr

let $var := expr :

Create a single binding of $var : bind $var to the output of expr .

Multiple for/let clauses are allowed and can be mixed:

let $cat := /child::catalog

for $p in $cat/child::*

let $i := $cat/child::imprint
...

c© Jens Teubner · Information Systems · Summer 2014 319

for/let Clauses; Tuple Stream

The for/let clauses produce a so-called tuple stream, e.g.,

for $x in (1, 2)

let $y := ("foo", $x * 4)

for $z in ("a", "b")
...

Resulting tuple stream:

(〈 $x = 1, $y = ("foo", 4), $z = "a" 〉
〈 $x = 1, $y = ("foo", 4), $z = "b" 〉
〈 $x = 2, $y = ("foo", 8), $z = "a" 〉
〈 $x = 2, $y = ("foo", 8), $z = "b" 〉)

c© Jens Teubner · Information Systems · Summer 2014 320

where/order by/return Clauses

The tuple stream produced by the for/let clauses is

filtered by the where clause

; effective Boolean value

and re-ordered according to the order by clause.

Then, for each tuple in the stream, the return clause is evaluated and

the result appended to the output.

�
XQuery is a functional language.

� What is the result of the following expression?

let $x := 1

for $i in (1, 2, 3, 4)

let $x := $x * 2

return $x

c© Jens Teubner · Information Systems · Summer 2014 321

Order

We’ve now seen two notions of order:

document order and

sequence order.

Both notions interact, but they are not the same. E.g.,

· · · /descendant::foo ↔ for $x in · · ·
return $x/descendant::foo

Most operators have a precise semantics with respect to order.

→ But that order can be relaxed.

→ unordered { · }, fn:unordered (·), default ordering mode

c© Jens Teubner · Information Systems · Summer 2014 322

Types

XQuery is a strongly typed language.

But:

There are many situations where data is implicitly type cast.

→ E.g., when using nodes in comparisons or arithmetic expr.

The conversion node → atomic value is called atomization.

→ If the node has an associated typed value (e.g., as a

consequence of schema validation), return that.

→ Otherwise, return the node’s string value, the concatenation

of the contents of all descendant text nodes.

To perform atomization explicitly, use the fn:data (·) built-in

function.

More things about types:

There are several operators that interact with XQuery’s type

system, e.g., cast as, instance of, typeswitch, . . .

c© Jens Teubner · Information Systems · Summer 2014 323

Element Construction

XQuery contains operators to construct new nodes.

→ Useful, e.g., to format output:

for $x in (1,2,3,4)

return

element number {

attribute value { $x },

element written-as {

("one", "two", "three", "four", "five")[$x]

}

}

� What is the output of this expression, written as XML?

c© Jens Teubner · Information Systems · Summer 2014 324

Node Identity

Every node has a unique identity.

→ Test with operator is.

→ Two nodes may have same content and structure, but a different

identity.

Node construction creates new identities.

→ Perform deep copy for nodes used in content expression.

→ � What is the output of

let $foo := element foo { }

let $bar := element bar { $foo }

return $foo is $bar/child::foo ?

c© Jens Teubner · Information Systems · Summer 2014 325

Node Identity (cont.)

Because of identity creation, node construction contains a side effect.

� Result of

let $a := element a { }

return $a is $a ?

� What about

element a { } is element a { } ?

XQuery is “almost” a functional language, but does not allow variable

substitution if the bound expression contains node construction.

c© Jens Teubner · Information Systems · Summer 2014 326

More Syntax: Abbreviated XPath

Three abbreviations may be used in XPath:

1 The ‘axis::’ part in a location step can be omitted and defaults to

‘child::’, e.g.,

doc(’cat.xml’)/catalog/tshirt/descendant::html:p

2 Two slashes ‘//’ instead of a single slash ‘/’ expand to

‘/descendant-or-self::node()/’.

doc(’cat.xml’)/catalog//price

expands to

doc(’cat.xml’)/catalog/descendant-or-self::node()/price

3 An ‘@’ sign instead of the ‘axis::’ expands to ‘attribute::’.

doc(’cat.xml’)/catalog/tshirt/@code

expands to

doc(’cat.xml’)/catalog/tshirt/attribute::code

c© Jens Teubner · Information Systems · Summer 2014 327

More Syntax: Direct Constructors

Direct constructors are a more intuitive way to express node

construction:

for $x in (1,2,3,4)

return

<number value=’{ $x }’>

<written-as>{

("one", "two", "three", "four", "five")[$x]

}</written-as>

</number>

→ Use curly braces {·} to “escape” back to XQuery.

c© Jens Teubner · Information Systems · Summer 2014 328

Comments

Comments in XQuery have to be embraced by (: · · · :).

� <!-- · · · --> is the direct comment constructor.

→ Such “comments” will appear as comment nodes in the query

result. In “XQuery mode” they likely lead to a syntax error.

� Comments within direct constructors?

<foo>

Would like to put some comment here.

This is text content.

</foo>

c© Jens Teubner · Information Systems · Summer 2014 329

SQL and XML

There are many ways how SQL and XML can interact.

E.g., IBM DB2:

Special data type XML.

→ Store XML documents as attribute values.

CREATE TABLE Employees (id INT NOT NULL,

name VARCHAR(30),

address XML);

INSERT INTO Employees (id, name, address)

VALUES (42, ’John Doe’,

XMLPARSE (DOCUMENT ’<address>’

|| ’<street>13 Main St</street>’

|| ’<zip>12345</zip>’

|| ’<city>Foo City</city>’

|| ’</address>’));

c© Jens Teubner · Information Systems · Summer 2014 330

SQL and XML (cont.)

Access to XML content (syntactically) through built-in functions.

XMLEXISTS (XQueryExpr PASSING SQLExpr AS VarName)

→ Typically used as filter in WHERE clause.

→ Pass attribute values of current row as variable to XQuery.

SELECT *

FROM Employees

WHERE name LIKE ’%Doe’

AND XMLEXISTS (’$a//pobox’ PASSING address AS "a")

c© Jens Teubner · Information Systems · Summer 2014 331

SQL and XML (cont.)

XMLQUERY (XQueryExpr PASSING SQLExpr AS VarName)

→ Evaluate given query expression and return result as XML.

XMLCAST (XMLExpr AS DataType)

→ Cast the result of the expression into an SQL data type.

Both are often used in combination:

SELECT id, name,

XMLCAST (XMLQUERY (’$a//zip’ PASSING address AS "a")

AS integer) AS city

FROM Employees

c© Jens Teubner · Information Systems · Summer 2014 332

SQL and XML (cont.)

Conversely, XML data can be queried as relational tables, e.g.,

SELECT u."PO ID", u."Part #", u."Product Name", u."Quantity",

u."Price", u."Order Date"

FROM PurchasEorder p,

XMLTABLE(’$po/PurchaseOrder/item’ PASSING p.POrder AS "po"

COLUMNS "PO ID" INTEGER PATH ’../@PoNum’,

"Part #" CHAR(10) PATH ’partid’,

"Product Name" VARCHAR(50) PATH ’name’,

"Quantity" INTEGER PATH ’quantity’,

"Price" DECIMAL(9,2) PATH ’price’,

"Order Date" DATE PATH ’../@OrderDate’

) AS u

WHERE p.status = ’Unshipped’

c© Jens Teubner · Information Systems · Summer 2014 333

	XML Processing

