
Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund

jens.teubner@cs.tu-dortmund.de

Summer 2014

c© Jens Teubner · Information Systems · Summer 2014 1

Part VIII

Transaction Management

c© Jens Teubner · Information Systems · Summer 2014 254

The “Hello World” of Transaction Management

My bank issued me a debit card to access my account.

Every once in a while, I’d use it at an ATM to draw some money

from my account, causing the ATM to perform a transaction in the

bank’s database.

1 bal ← read_bal (acct_no) ;

2 bal ← bal − 100 EUR ;

3 write_bal (acct_no, bal) ;

My account is properly updated to reflect the new balance.

c© Jens Teubner · Information Systems · Summer 2014 255

Concurrent Access

The problem is: My wife has a card for the account, too.

We might end up using our cards at different ATMs at the same

time.

me my wife DB state

bal ← read (acct) ; 1200

bal ← read (acct) ; 1200

bal ← bal − 100 ; 1200

bal ← bal − 200 ; 1200

write (acct, bal) ; 1100

write (acct, bal) ; 1000

The first update was lost during this execution. Lucky me!

c© Jens Teubner · Information Systems · Summer 2014 256

Another Example

This time, I want to transfer money over to another account.

// Subtract money from source (checking) account

1 chk bal ← read_bal (chk_acct_no) ;

2 chk bal ← chk bal − 500 EUR ;

3 write_bal (chk_acct_no, chk_bal) ;

// Credit money to the target (saving) account

4 sav bal ← read_bal (sav_acct_no) ;

5 sav bal ← sav bal + 500 EUR ;

6 write_bal (sav_acct_no, sav_bal) ;

Before the transaction gets to step 6, its execution is interrupted or

cancelled (power outage, disk failure, software bug, . . .). My

money is lost /.

c© Jens Teubner · Information Systems · Summer 2014 257

ACID Properties

One of the key benefits of a database system are the transaction

properties guaranteed to the user:

AtomicityA Either all or none of the updates in a database transaction

are applied.

ConsistencyC Every transaction brings the database from one consistent

state to another.

IsolationI A transaction must not see any effect from other

transactions that run in parallel.

DurabilityD The effects of a successful transaction maintain persistent

and may not be undone for system reasons.

A challenge is to preserve these guarantees even with multiple users

accessing the database concurrently.

c© Jens Teubner · Information Systems · Summer 2014 258

Anomalies: Lost Update

We already saw a lost update example on slide 256.

The effects of one transaction are lost, because of an uncontrolled

overwriting by the second transaction.

c© Jens Teubner · Information Systems · Summer 2014 259

Anomalies: Inconsistent Read

Consider the money transfer example (slide 257), expressed in SQL

syntax:

Transaction 1 Transaction 2
UPDATE Accounts
SET balance = balance - 500
WHERE customer = 4711

AND account_type = ’C’;

SELECT SUM(balance)
FROM Accounts
WHERE customer = 4711;

UPDATE Accounts
SET balance = balance + 500
WHERE customer = 4711

AND account_type = ’S’;

Transaction 2 sees an inconsistent database state.

c© Jens Teubner · Information Systems · Summer 2014 260

Anomalies: Dirty Read

At a different day, my wife and me again end up in front of an ATM at

roughly the same time:

me my wife DB state

bal ← read (acct) ; 1200

bal ← bal − 100 ; 1200

write (acct, bal) ; 1100

bal ← read (acct) ; 1100

bal ← bal − 200 ; 1100

abort ; 1200

write (acct, bal) ; 900

My wife’s transaction has already read the modified account balance

before my transaction was rolled back.

c© Jens Teubner · Information Systems · Summer 2014 261

Concurrent Execution

The scheduler decides the execution order of concurrent database

accesses.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2
1

2

1

3
2

1

2

1

1

c© Jens Teubner · Information Systems · Summer 2014 262

Database Objects and Accesses

We now assume a slightly simplified model of database access:

1 A database consists of a number of named objects. In a given

database state, each object has a value.

2 Transactions access an object o using the two operations read o

and write o.

In a relational DBMS we have that

object ≡ attribute .

c© Jens Teubner · Information Systems · Summer 2014 263

Transactions

A database transaction T is a (strictly ordered) sequence of steps.

Each step is a pair of an access operation applied to an object.

Transaction T = 〈s1, . . . , sn〉
Step si = (ai , ei)

Access operation ai ∈ {r(ead), w(rite)}
The length of a transaction T is its number of steps |T | = n.

We could write the money transfer transaction as

T = 〈 (read,Checking), (write,Checking),
(read,Saving), (write,Saving) 〉

3
2
1

or, more concisely,

T = 〈r(C),w(C), r(S),w(S)〉 .

c© Jens Teubner · Information Systems · Summer 2014 264

Schedules

A schedule S for a given set of transactions T = {T1, . . . ,Tn} is an

arbitrary sequence of execution steps

S(k) = (Tj , ai , ei) k = 1 . . .m ,
2

1

1

such that

1 S contains all steps of all transactions and nothing else and

2 the order among steps in each transaction Tj is preserved:

(ap, ep) < (aq, eq) in Tj ⇒ (Tj , ap, ep) < (Tj , aq, eq) in S .

We sometimes write

S = 〈r1(B), r2(B),w1(B),w2(B)〉

to mean
S(1) = (T1, read,B) S(3) = (T1, write,B)
S(2) = (T2, read,B) S(4) = (T2, write,B)

c© Jens Teubner · Information Systems · Summer 2014 265

Serial Execution

One particular schedule is serial execution.

A schedule S is serial iff, for each contained transaction Tj , all its

steps follow each other (no interleaving of transactions).

Consider again the ATM example from slide 256.

S = 〈r1(B), r2(B),w1(B),w2(B)〉
This schedule is not serial.

2

2

1

1

If my wife had gone to the bank one hour later, “our” schedule probably

would have been serial.

S = 〈r1(B),w1(B), r2(B),w2(B)〉
2

1

2

1

c© Jens Teubner · Information Systems · Summer 2014 266

Correctness of Serial Execution

Anomalies such as the “lost update” problem on slide 256 can only

occur in multi-user mode.

If all transactions were fully executed one after another (no

concurrency), no anomalies would occur.

Any serial execution is correct.

Disallowing concurrent access, however, is not practical.

Therefore, allow concurrent executions if they are equivalent to a

serial execution.

c© Jens Teubner · Information Systems · Summer 2014 267

Conflicts

What does it mean for a schedule S to be equivalent to another schedule

S ′?

Sometimes, we may be able to reorder steps in a schedule.

We must not change the order among steps of any transaction

Tj (↗ slide 265).

Rearranging operations must not lead to a different result.

Two operations (a, e) and (a′, e ′) are said to be in conflict

(a, e)= (a′, e ′) if their order of execution matters.

When reordering a schedule, we must not change the relative

order of such operations.

Any schedule S ′ that can be obtained this way from S is said to be

conflict equivalent to S .

c© Jens Teubner · Information Systems · Summer 2014 268

Conflicts

Based on our read/write model, we can come up with a more

machine-friendly definition of a conflict.

Two operations (Ti , a, e) and (Tj , a
′, e ′) are in conflict in S if

1 they belong to two different transactions (Ti 6= Tj),

2 they access the same database object, i.e., e = e ′, and

3 at least one of them is a write operation.

This inspires the following conflict matrix:

read write

read ×
write × ×

Conflict relation ≺S :

(Ti , a, e) ≺S (Tj , a
′, e ′)

:=
(a, e)= (a′, e ′) ∧ (Ti , a, e) occurs before (Tj , a

′, e ′) in S ∧ Ti 6= Tj

c© Jens Teubner · Information Systems · Summer 2014 269

Conflict Serializability

A schedule S is conflict serializable iff it is conflict equivalent to

some serial schedule S ′.

The execution of a conflict-serializable S schedule is correct.

S does not have to be a serial schedule.

This allows us to prove the correctness of a schedule S based on its

conflict graph G (S) (also: serialization graph).

Nodes are all transactions Ti in S .

There is an edge Ti → Tj iff S contains operations (Ti , a, e)
and (Tj , a

′, e ′) such that (Ti , a, e) ≺S (Tj , a
′, e ′).

S is conflict serializable if G (S) is acyclic.12

12A serial execution of S could be obtained by sorting G(S) topologically.
c© Jens Teubner · Information Systems · Summer 2014 270

Serialization Graph

Example: ATM transactions (↗ slide 256)

S = 〈r1(A), r2(A),w1(A),w2(A)〉
Conflict relation:

(T1, r,A) ≺S (T2, w,A)
(T2, r,A) ≺S (T1, w,A)
(T1, w,A) ≺S (T2, w,A)

T1

T2

→ not serializable

Example: Two money transfers (↗ slide 257)

S = 〈r1(C),w1(C), r2(C),w2(C), r1(S),w1(S), r2(S),w2(S)〉
Conflict relation:

(T1, r,C) ≺S (T2, w,C)
(T1, w,C) ≺S (T2, r,C)
(T1, w,C) ≺S (T2, w,C)

...

T1

T2

→ serializable

c© Jens Teubner · Information Systems · Summer 2014 271

Query Scheduling

Can we build a scheduler that always emits a serializable schedule?

Idea:

Require each transaction to

obtain a lock before it accesses

a data object o:

1 lock o ;

2 . . . access o . . . ;

3 unlock o ;

This prevents concurrent

access to o.

Client 1 Client 2 Client 3

Scheduler

Access and Storage Layer

3
2
1

2

1

3
2
1

2

1

1

c© Jens Teubner · Information Systems · Summer 2014 272

Locking

If a lock cannot be granted (e.g., because another transaction T ′

already holds a conflicting lock) the requesting transaction Ti gets

blocked.

The scheduler suspends execution of the blocked transaction T .

Once T ′ releases its lock, it may be granted to T , whose execution

is then resumed.

Since other transactions can continue execution while T is blocked,

locks can be used to control the relative order of operations.

c© Jens Teubner · Information Systems · Summer 2014 273

Locking and Serializability

� Does locking guarantee serializable schedules, yet?

� No! Imagine all transactions would just wrap each read/write

operation tightly into lock/unlock calls.

1 lock (acct) ;

2 bal ← read_bal (acct) ;

3 unlock (acct) ;

4 bal ← bal − 100 EUR ;

5 lock (acct) ;

6 write_bal (acct, bal) ;

7 unlock (acct) ;

c© Jens Teubner · Information Systems · Summer 2014 274

ATM Transaction with Locking

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200

read (acct) ;

unlock (acct) ;
lock (acct) ;

read (acct) ;

unlock (acct) ;
lock (acct) ;

write (acct) ; 1100

unlock (acct) ;
lock (acct) ;

write (acct) ; 1000

unlock (acct) ;

c© Jens Teubner · Information Systems · Summer 2014 275

Two-Phase Locking (2PL)

The two-phase locking protocol poses an additional restriction:

Once a transaction has released any lock, it must not acquire any

new lock.

lock phase release phase

of

locks held

time

Two-phase locking is the concurrency control protocol used in

database systems today.

c© Jens Teubner · Information Systems · Summer 2014 276

Again: ATM Transaction

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200

read (acct) ;

unlock (acct) ;
lock (acct) ;

read (acct) ;

unlock (acct) ;
lock (acct) ; �
write (acct) ; 1100

unlock (acct) ;
lock (acct) ; �
write (acct) ; 1000

unlock (acct) ;

c© Jens Teubner · Information Systems · Summer 2014 277

A 2PL-Compliant ATM Transaction

To comply with the two-phase locking protocol, the ATM

transaction must not acquire any new locks after a first lock has

been released.

1 lock (acct) ;

2 bal ← read_bal (acct) ;

3 bal ← bal − 100 EUR ;

4 write_bal (acct, bal) ;

5 unlock (acct) ;

lock phase

unlock phase

c© Jens Teubner · Information Systems · Summer 2014 278

Resulting Schedule

Transaction 1 Transaction 2 DB state

lock (acct) ; 1200

read (acct) ;

lock (acct) ;

write (acct) ; 1100

unlock (acct) ;

read (acct) ;

write (acct) ; 900

unlock (acct) ;

Transaction

blocked

The use of locking lead to a correct (and serializable) schedule.

c© Jens Teubner · Information Systems · Summer 2014 279

Deadlocks

Like many lock-based protocols, two-phase locking has the risk of

deadlock situations:

Transaction 1 Transaction 2

lock (A) ;
... lock (B)

do something
...

... do something

lock (B)
...

[wait for T2 to release lock] lock (A)

[wait for T1 to release lock]

Both transactions would wait for each other indefinitely.

c© Jens Teubner · Information Systems · Summer 2014 280

Deadlock Handling

A typical approach to deal with deadlocks is deadlock detection:

The system maintains a waits-for graph, where an edge T1 → T2
indicates that T1 is blocked by a lock held by T2.

Periodically, the system tests for cycles in the graph.

If a cycle is detected, the deadlock is resolved by aborting one or

more transactions.

Selecting the victim is a challenge:

Blocking young transactions may lead to starvation: the same

transaction is cancelled again and again.

Blocking an old transaction may cause a lot of investment to

be thrown away.

c© Jens Teubner · Information Systems · Summer 2014 281

Deadlock Handling

Other common techniques:

Deadlock prevention: e.g., by treating handling lock requests in an

asymmetric way:

wait-die: A transaction is never blocked by an older

transaction.

wound-wait: A transaction is never blocked by a younger

transaction.

Timeout: Only wait for a lock until a timeout expires. Otherwise

assume that a deadlock has occurred and abort.

I E.g., IBM DB2 UDB:

db2 => GET DATABASE CONFIGURATION;
...

Interval for checking deadlock (ms) (DLCHKTIME) = 10000
Lock timeout (sec) (LOCKTIMEOUT) = -1

c© Jens Teubner · Information Systems · Summer 2014 282

Variants of Two-Phase Locking

The two-phase locking protocol does not prescribe exactly when

locks have to acquired and released.

Possible variants:

“lock phase” release phase

locks

held

time

preclaiming 2PL

lock phase “release phase”

locks

held

time

strict 2PL

� What could motivate either variant?

c© Jens Teubner · Information Systems · Summer 2014 283

Cascading Rollbacks

Consider three transactions:

�
abort ;w(x)

r(x)

r(x)

T1

T2

T3
time

t2t1

When transaction T1 aborts, transactions T2 and T3 have already

read data written by T1 (↗ dirty read, slide 261)

T2 and T3 need to be rolled back, too.

T2 and T3 cannot commit until the fate of T1 is known.

This problem cannot arise under strict two-phase locking.

c© Jens Teubner · Information Systems · Summer 2014 284

Consistency Guarantees and SQL 92

Sometimes, some degree of inconsistency may be acceptable for specific

applications:

“Mistakes” in few data sets, e.g., will not considerably affect the

outcome of an aggregate over a huge table.

; Inconsistent read anomaly

SQL 92 specifies different isolation levels.

E.g.,

SET ISOLATION SERIALIZABLE;

Obviously, less strict consistency guarantees should lead to increased

throughput.

c© Jens Teubner · Information Systems · Summer 2014 285

SQL 92 Isolation Levels

read uncommitted (also: ‘dirty read’ or ‘browse’)

Only write locks are acquired (according to strict 2PL).

read committed (also: ‘cursor stability’)

Read locks are only held for as long as a cursor sits on the

particular row. Write locks acquired according to strict 2PL.

repeatable read (also: ‘read stability’)

Acquires read and write locks according to strict 2PL.

serializable

Additionally obtains locks to avoid phantom reads.

c© Jens Teubner · Information Systems · Summer 2014 286

Phantom Problem

Transaction 1 Transaction 2 Effect

scan relation R ; T1 locks all rows

insert new row into R ; T2 locks new row

commit ; T2’s lock released

scan relation R ; reads new row, too!

Although both transactions properly followed the 2PL protocol, T1
observed an effect caused by T2.

Cause of the problem: T1 can only lock existing rows.

Possible solutions:

Key range locking, typically in B-trees

Predicate locking

c© Jens Teubner · Information Systems · Summer 2014 287

D
e
n
n
is
S
h
a
sh
a
n
a
d
P
h
ili
p
p
e
B
o
n
n
e
t.
D
a
ta
b
a
se
T
u
n
in
g
.
M
o
rg
a
n
K
a
u
fm
a
n
n
,
2
0
0
3
.

c© Jens Teubner · Information Systems · Summer 2014 288

D
e
n
n
is
S
h
a
sh
a
n
a
d
P
h
ili
p
p
e
B
o
n
n
e
t.
D
a
ta
b
a
se
T
u
n
in
g
.
M
o
rg
a
n
K
a
u
fm
a
n
n
,
2
0
0
3
.

c© Jens Teubner · Information Systems · Summer 2014 289

D
e
n
n
is
S
h
a
sh
a
n
a
d
P
h
ili
p
p
e
B
o
n
n
e
t.
D
a
ta
b
a
se
T
u
n
in
g
.
M
o
rg
a
n
K
a
u
fm
a
n
n
,
2
0
0
3
.

c© Jens Teubner · Information Systems · Summer 2014 290

Resulting Consistency Guarantees

isolation level dirty read non-repeat. rd phantom rd

read uncommitted possible possible possible

read committed not possible possible possible

repeatable read not possible not possible possible

serializable not possible not possible not possible

Some implementations support more, less, or different levels of

isolation.

Few applications really need serializability.

c© Jens Teubner · Information Systems · Summer 2014 291

Optimistic Concurrency Control

So far we’ve been rather pessimistic:

we’ve assumed the worst and prevented that from happening.

In practice, conflict situations are not that frequent.

Optimistic concurrency control: Hope for the best and only act in

case of conflicts.

c© Jens Teubner · Information Systems · Summer 2014 292

Optimistic Concurrency Control

Handle transactions in three phases:

1 Read Phase. Execute transaction, but do not write data back to

disk immediately. Instead, collect updates in a private workspace.

2 Validation Phase. When the transaction wants to commit, test

whether its execution was correct. If it is not, abort the transaction.

3 Write Phase. Transfer data from private workspace into database.

c© Jens Teubner · Information Systems · Summer 2014 293

Validating Transactions

Validation is typically implemented by looking at transactions’

Read Sets RS(Ti): (attributes read by transaction Ti) and

Write Sets WS(Ti): (attributes written by transaction Ti).

backward-oriented optimistic concurrency control (BOCC):

Compare T against all committed transactions Tc .

Check succeeds if

Tc committed before T started or RS(T) ∩WS(Tc) = ∅ .

forward-oriented optimistic concurrency control (FOCC):

Compare T against all running transactions Tr .

Check succeeds if

WS(T) ∩ RS(Tr) = ∅ .

c© Jens Teubner · Information Systems · Summer 2014 294

Multiversion Concurrency Control

Consider the schedule

r1(x),w1(x), r2(x),

t

w2(y), r1(y),w1(z) .

� Is this schedule serializable?

No! E.g., w1(x) < r2(x) and w2(y) < r1(y)

Now suppose when T1 wants to read y , we’d still have the “old”

value of y , valid at time t, around.

We could then create a history equivalent to

r1(x),w1(x), r2(x), r1(y),w2(y),w1(z) ,

which is serializable.

c© Jens Teubner · Information Systems · Summer 2014 295

Multiversion Concurrency Control

With old object versions still around, read transactions need no

longer be blocked.

They might see outdated, but consistent versions of data.

Problem: Versioning requires space and management overhead

(; garbage collection).

Some systems support snapshot isolation.

I Oracle, SQL Server, PostgreSQL

c© Jens Teubner · Information Systems · Summer 2014 296

	Transaction Management
	Motivation and Examples
	ACID Properties
	Anomalies
	The Database Scheduler
	Serializability
	Transactions
	Schedules
	Conflicts
	Conflict Serializability
	Serialization Graphs

	Query Scheduling
	Locking
	Examples

	Two-Phase Locking
	Example
	Deadlocks
	Variants of Two-Phase Locking

	Consistency Guarantees and SQL 92
	SQL 92 Isolation Levels

	Phantom Problem
	Isolation Levels and Consistency Guarantees

	Optimistic Concurrency Protocol
	Multiversion Concurrency Protocol

