
Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund

jens.teubner@cs.tu-dortmund.de

Summer 2014

c© Jens Teubner · Information Systems · Summer 2014 1

Part V

The Relational Data Model

c© Jens Teubner · Information Systems · Summer 2014 85

The Relational Model

The relational model was proposed in 1970 by Edgar F. Codd:7

“The term relation is used here in its accepted mathe-

matical sense. Given sets S1,S2, . . . ,Sn (not necessarily

distinct), R is a relation of these n sets if it is a set of

n-tuples each of which has its first element from S1, its

second element from S2, and so on.”

In other words, a relation R is a subset of a Cartesian product

R ⊆ S1 × S2 × · · · × Sn .

R contains n-tuples, where the ith field must take values from the set Si
(Si is the ith domain of R).

7E. F. Codd. A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, vol. 13(6), June 1970.
c© Jens Teubner · Information Systems · Summer 2014 86

Relations are Sets of Tuples

A relation is a set of n-tuples, e.g., representing cocktail ingredients:

Ingredients =
{
〈 “Orange Juice” , 0.0 , 12 , 2.99 〉,
〈 “Campari” , 25.0 , 5 , 12.95 〉,
〈 “Mineral Water” , 0.0 , 10 , 1.49 〉,
〈 “Bacardi” , 37.5 , 3 , 16.98 〉

}
Relations can be illustrated as tables:

Ingredients

Name Alcohol InStock Price

Orange Juice 0.0 12 2.99

Campari 25.0 5 12.95

Mineral Water 0.0 10 1.49

Bacardi 37.5 3 16.98

→ Each column must have a unique name (within one relation).

c© Jens Teubner · Information Systems · Summer 2014 87

Schema vs. Value

A relation consists of two parts:

1 Schema: The schema of a relation is its list of attributes:

sch(Ingredients) = (Name,Alcohol , InStock ,Price) .

Each attribute has an associated domain that specifies valid values

for that column:

dom(Alcohol) = DECIMAL(3,2) .

Often, key constraints are considered part of the schema, too.

2 Value (or instance): The value/instance val(R) of a relation R is

the set of tuples (rows) that R currently contains.

c© Jens Teubner · Information Systems · Summer 2014 88

Sets of Tuples

Relations are sets of tuples:

The ordering among tuples/rows is undefined.

A relation cannot contain duplicate rows.

→ A consequence is that every relation has a key. Use the set of

all attributes if there is no shorter key.

c© Jens Teubner · Information Systems · Summer 2014 89

Atomic Values

Attribute domains must be atomic:

Column entries must not have an internal structure or contain

“multiple values”.

A table like

Ingredients

Name Alcohol SoldBy

Orange Juice 0.0

Supplier Price

A&P Supermarket 2.49

Shop Rite 2.79

Campari 25.0
Supplier Price

Joe’s Liquor Store 14.99

is not a valid relation.

c© Jens Teubner · Information Systems · Summer 2014 90

Querying Relational Data

Since relations are sets in the mathematical sense, we can use

mathematical formalisms to reason over relations.

In this course we will use

relational algebra and

relational calculus

to express queries over relational data.

Both are used internally by any decent relational DBMS.

Knowledge of both languages will help in understanding SQL and

relational database systems in general.

c© Jens Teubner · Information Systems · Summer 2014 91

Relational Algebra

In mathematics, an algebra is a system that consists of

a set (the carrier) and

operations that are closed with respect to the set.

In the case of relational algebra,

the carrier is the set of all finite relations.

We’ll get to know its operations in a moment.

Algebraic operators are closed with respect to their set.

Every operator takes as input one or more relations

(The number of input operands to an operator f is called the arity of f .)

The output is again a relation.

Operators and relations can be composed into expressions (or queries).

c© Jens Teubner · Information Systems · Summer 2014 92

Relational Algebra: Selection

The selection σp selects a subset of the tuples of a relation, namely

those which satisfy the predicate p.

σA=1

A B

1 3

1 4

2 5

 =

A B

1 3

1 4

Selection acts like a filter on its input relation.

Selection leaves the schema of the relation unchanged:

sch
(
σp(R)

)
= sch(R) .

This best compares to the WHERE clause in SQL.

c© Jens Teubner · Information Systems · Summer 2014 93

Relational Algebra: Selection

The predicate p is a Boolean expressions composed of

literal constants,

attribute names, and

arithmetic (+, −, ∗, . . .), comparison (=, >, ≤, . . .), and

Boolean operators (∧, ∨, ¬).

p is evaluated for each tuple in isolation.

→ Quantifiers (∃, ∀) or nested relational algebra expressions are

not permitted within predicates.

c© Jens Teubner · Information Systems · Summer 2014 94

Relational Algebra: Projection

The projection πL eliminates all attributes (columns) of the input

relation but those listed in the projection list L.

πA,C

A B C

1 3 2

1 3 5

2 5 2

 =

A C

1 2

1 5

2 2

Intuitively: “σp discards rows; πL discards columns.”

Database slang: “All attributes not in L are projected away.”

Projection can also be used to re-order columns.

Projection affects the schema: sch
(
πL(R)

)
= L.

(All attributes listed in L must exist in sch(R).)

c© Jens Teubner · Information Systems · Summer 2014 95

Relational Algebra: Projection

� Projection might change the cardinality (i.e., the

number of rows) of a relation.

πA,B

A B C

1 3 2

1 3 5

2 5 2

 =

A B

1 3

2 5

Remember that relations are duplicate-free sets!

c© Jens Teubner · Information Systems · Summer 2014 96

Relational Algebra: Projection

Often, πL is used also to express additional functionality (needed, e.g.,

to implement SQL):

Column renaming:

πB1←Ai1 ,...,Bk←Aik (R) .

Computations:

πName,Value← InStock∗Price (Ingredients) .

Alternatively, a separate re-naming operator %L is often seen to express

such functionality, e.g.,

%B1←Ai1 ,...,Bk←Aik (R) .

Often, ‘:’ is used instead of ‘←’ (e.g., %B1:Ai1 ,...,Bk :Aik (R)).

c© Jens Teubner · Information Systems · Summer 2014 97

Relational Algebra: Projection and SQL

In SQL, duplicate rows are not eliminated automatically.

→ Request duplicate elimination explicitly using keyword DISTINCT.

SELECT DISTINCT Alcohol, InStock

FROM Ingredients

WHERE Alcohol = 0

In SQL, projection is expressed using the SELECT clause:
�

πB1←E1,...,Bk←Ek (R)

↓

SELECT DISTINCT E1 AS B1, ..., Ek AS Bk
FROM R

c© Jens Teubner · Information Systems · Summer 2014 98

Relational Algebra: Cartesian Product

The Cartesian product of two relations R and S is computed by

concatenating each tuple r ∈ R with each tuple s ∈ S .

A B

1 3

2 5

×
C D

7 2

3 4

=

A B C D

1 3 7 2

1 3 3 4

2 5 7 2

2 5 3 4

The Cartesian product contains all columns from both inputs:

sch(R × S) = sch(R) ++ sch(S) .

→ R and S must not share any attribute names.

→ If they do, need to re-name first (using π/%).

c© Jens Teubner · Information Systems · Summer 2014 99

Cartesian Product and SQL

We already learned how a Cartesian product can be expressed in SQL:

SELECT *

FROM R, S

SQL systems will not care about the duplicate column names.

(In fact, they allow, e.g., computed values with no column name at all.)

Unique column names will be generated by the system if necessary.

c© Jens Teubner · Information Systems · Summer 2014 100

Relational Algebra: Set Operations

The two set operators ∪ (union) and − (set difference) complete the

set of relational algebra operators:

A B

1 3

1 4

2 5

∪
A B

1 4

3 2

=

A B

1 3

1 4

2 5

3 2

A B

1 3

1 4

2 5

−
A B

1 4

3 2

=

A B

1 3

2 5

c© Jens Teubner · Information Systems · Summer 2014 101

Relational Algebra: Set Operations

Notes:

In R ∪ S and R − S , R and S must be schema compatible:

sch(R ∪ S) = sch(R − S) = sch(R) = sch(S) .

For R ∪ S , R and S need not be disjoint.

For R − S , S need not be a subset of R.

In SQL, ∪ and − are available as UNION and EXCEPT, e.g.,

SELECT Name

FROM Cocktails

UNION

SELECT Name

FROM Ingredients

c© Jens Teubner · Information Systems · Summer 2014 102

Five Basic Algebra Operators

The five basic operations of relational algebra are:

1 σp Selection

2 πL Projection

3 × Cartesian product

4 ∪ Union

5 − Difference

Any other relational algebra operator (we’ll soon see some of them)

can be derived from those five.

A compact set of operators is a good basis for software (e.g., query

optimizers) or database theoreticians to reason over a query or over

the language.

c© Jens Teubner · Information Systems · Summer 2014 103

Monotonicity

Observe that the first four operators, σ, π, ×, and ∪, are monotonic:

New data added to the database might only increase, but never

decrease the size of their output. E.g.,

R ⊆ S ⇒ σp(R) ⊆ σp(S) .

For queries composed only of these operators, database insertion

never invalidates a correct answer.

Difference (−) is the only non-monotonic operator among the

basic five.

c© Jens Teubner · Information Systems · Summer 2014 104

Monotonicity

For queries with a non-monotonic semantics, e.g.,

“Which ingredients cannot be ordered at ‘Liquors & More’ ?”

“Which ingredient has the highest percentage of alcohol?”

“Which supplier offers all ingredients in the database?”

the operators σ, π, ×, ∪ are not sufficient to formulate the query. Such

queries require set difference.

� Formulate the first of these queries in relational algebra.

c© Jens Teubner · Information Systems · Summer 2014 105

The Join Operator 1p

The combination σ-× occurs particularly often.

→ The σ-× pair can be used to combine data from multiple tables, in

particular by following foreign key relationships.

Example:

σContactPersons.ContactFor=Suppliers.SuppID
(

Suppliers × ContactPersons
)

Because of this, we introduce a short notation for the scenario:

R 1p S := σp (R × S)

and call operation 1p a join (“R and S are joined”).

c© Jens Teubner · Information Systems · Summer 2014 106

The Join Operator 1p

With a join operator, the example on the previous slide would read:

Suppliers 1ContactPersons.ContactFor=Suppliers.SuppID ContactPersons

or (omitting redundant relation names in the predicate):

Suppliers 1ContactFor=SuppID ContactPersons

The basic join operator exactly expands to

a σ-× combination as shown on the previous slide!

c© Jens Teubner · Information Systems · Summer 2014 107

The Join Operator 1p / Theta Join

The join operator could be used to express any predicate over R and S

(though this tends to be not so meaningful in practice).

Ingredients 1Flavor≤Email ∧Alcohol<10 ContactPersons

The pattern

R 1AiθBj S ,

where Ai is an attribute from R, Bj an attribute from S , and

θ ∈ {=, 6=, <,≤, >,≥} is often called a θ join (theta join).

The case θ ≡ = is also called an equi join.

c© Jens Teubner · Information Systems · Summer 2014 108

The Natural Join

The most frequent join operation is an (equi) join that follows a foreign

key constraint.

It is good practice to use the same attribute name for a primary key

and for foreign keys that reference it.

E.g.,

Cocktails

CockID CName Alcohol GlassID
...

...
...

...

Glasses

GlassID GlassName Volume
...

...
...

(where GlassID in Cocktails references the GlassID in Glasses).

c© Jens Teubner · Information Systems · Summer 2014 109

The Natural Join

To simplify notation for that common case, we introduce the following

convention:

If no explicit predicate is given in the join operator, we

interpret this as

an equi join over all pairs of columns that have

the same name

and

the column used for joining is only reported once

in the join result.

We call this situation a natural join.

c© Jens Teubner · Information Systems · Summer 2014 110

The Natural Join

Based on the example schema on slide 109, the natural join

Cocktails 1 Glasses

would perform the (intuitively expected) join over GlassID columns

(Cocktails.GlassID = Glasses.GlassID) and have the return schema

Cocktails

CockID CName Alcohol GlassID GlassName Volume
...

...
...

...
...

...

�
The example worked out, because I used different

column names for all non-join attributes. Otherwise,

1 would have implicitly joined over, e.g., Name, too.

c© Jens Teubner · Information Systems · Summer 2014 111

Join as a Filter

Consider the join expression

Suppliers 1 ContactPersons ,

where we assume that ContactPerson has a foreign key SuppID (and no

other column pairs with same name exist).

The query will report all suppliers with their contact person.

But:

Suppliers where no contact person is stored in ContactPersons will

not appear in the result. The join effectively implies a filtering

behavior.

c© Jens Teubner · Information Systems · Summer 2014 112

Join as a Filter—Semi Join

Sometimes, this filtering behavior is everything we really need from

the join operation.

E.g., “All suppliers where we know a contact person.”

πSuppliers.∗
(

Suppliers 1 ContactPersons
)
,

For this situation, database people introduced another explicit notation:

R n S := πsch(R)
(

R 1 S
)

R np S := πsch(R)
(

R 1p S
)
,

i.e., compute the join R 1 S , but keep only colums that come from R.

This operation is also called a semi join.

c© Jens Teubner · Information Systems · Summer 2014 113

Quiz

� What if I want the opposite, all suppliers where we do not know

a contact person?

This is an example of a non-monotonic query

→ The solution must include a − operation (set difference).

Possible solution:

Suppliers −
(

Suppliers n ContactPersons
)
.

c© Jens Teubner · Information Systems · Summer 2014 114

Outer Joins

In other cases, the filtering effect is not desired.

To obtain all suppliers with their contact person without discarding

Supplier tuples, use the outer join (here: left outer join):

Suppliers ContactPersons .

� Assuming the input

Suppliers

SuppID SuppName

1 Shop Rite

2 Liquors & More

3 Joe’s Liquor Store

ContactPersons

SuppID ContactName

1 Mary Shoppins

3 Joe Drinkmore

,

what is the result of the above left outer join?

c© Jens Teubner · Information Systems · Summer 2014 115

Division

For certain kinds of queries, the division operator is useful.

Given two relations

R

A B
...

...

and

S

B
...

,

the division

R ÷ S

returns those A values ai , such that for every B value bj in S there is a

tuple 〈ai , bj〉 in R.

c© Jens Teubner · Information Systems · Summer 2014 116

Example

A B

1 a

1 c

2 b

2 a

2 c

3 b

3 c

3 a

3 d

÷
B

a

c

=

A

1

2

3

A B

1 a

1 c

2 b

2 a

2 c

3 b

3 c

3 a

3 d

÷

B

a

b

c

=

A

2

3

The division would be useful to, e.g., ask for suppliers that offer all

ingredients:

Suppliers 1
(

Supplies ÷ πIngrID(Ingredients)
)

c© Jens Teubner · Information Systems · Summer 2014 117

Algebraic Laws

Relational algebra operators may have interesting properties, e.g.,

The join satisfies the associativity condition:

(R 1 S) 1 T ≡ R 1 (S 1 T) .

(We can thus often omit parentheses in “join chains”: R 1 S 1 T .)

Join is not commutative, however, unless it is followed by a

projection (to re-order columns):

πL(R 1 S) ≡ πL(S 1 R) .

If p only refers to attributes in S , then

σp(R 1 S) ≡ R 1 σp(S)

(this is also known as selection pushdown).

c© Jens Teubner · Information Systems · Summer 2014 118

Algebraic Expressions

Relational Algebra is an expression-oriented language.

→ Expressions consume and produce relations.

→ Results of expressions can be input to other expressions.

E.g.,((
πIngrID (σName=‘Campari’Ingredients)

)
1 Supplies

)
1 Suppliers

Another way of looking at this is

an operator tree:

1

1

πIngrID

σName=‘Campari’

Ingredients

Supplies

Suppliers

c© Jens Teubner · Information Systems · Summer 2014 119

Operator Trees

1

1

πIngrID

σName=‘Campari’

Ingredients

Supplies

Suppliers

Such operator trees imply an evaluation order.

Computation proceeds bottom-up (the evaluation order of sibling

branches is not defined).

Operator trees are thus a useful tool to describe evaluation

strategy and order.

c© Jens Teubner · Information Systems · Summer 2014 120

Query Plans

Most relational query optimizers use operator trees internally.

→ The operator tree leads to a query plan or execution plan.

→ The execution engine is defined by operator implementations for all

of the algebraic operators.

E.g., IBM DB2 execution plan:

RETURN(1) 22.72

HSJOIN(3) 22.72

HSJOIN(5) 15.15

TBSCAN(7) 7.57

DB2INST1.SUPPLIES

TBSCAN(9) 7.57

DB2INST1.INGREDIENTS

TBSCAN(11) 7.57

DB2INST1.SUPPLIERS

c© Jens Teubner · Information Systems · Summer 2014 121

Query Optimization

Plan trees can be re-written using algebraic laws:

E.g.,

selection pushdown: rewrite expressions to apply selection

predicates early:

σp(R 1 S) → R 1 σp(S)

(we saw this algebraic law before).

decide join order:

πL(R 1 S 1 T) → πL
(

T 1 (S 1 R)
)

The rewrite direction is often guided by heuristics and/or cost

estimations (; Course ‘Architecture of Database Systems’).

c© Jens Teubner · Information Systems · Summer 2014 122

Procedural ↔ Declarative

The execution order implied by algebraic expressions gives relational

algebra a procedural nature.

→ This is good for query optimization.

→ It is not so good for query formulation (e.g., by users).

Want to leave execution strategies up to the database.

For query formulation, we’d much rather like to have a fully declarative

way to describe queries.

→ Specify what you want as a result, not how it can be computed.

→ “I want all tuples that look like . . . ” or “I want all tuples that

satisfy the predicate . . . ”

c© Jens Teubner · Information Systems · Summer 2014 123

Tuple Relational Calculus: Idea

In mathematics, a common way to describe sets is{
x | p(x)

}
,

meaning that the set contains all x that satisfy a predicate p.

This inspires the tuple relational calculus (TRC):

In a tuple relational calculus query{
t | F (t)

}
,

t is a tuple variable, F is a formula that describes how tuples t must

look like to qualify for the result.

c© Jens Teubner · Information Systems · Summer 2014 124

TRC Formulas

Formulas form the heart of the TRC. The language for formulas is a

subset of first-order logic:

An atomic formula is one of the following:

t ∈ RelationName

t ← 〈X1, . . . ,Xk〉 (tuple constructor)

r .a θ s.b (r , s tuple variables; a, b attributes in r , s; θ ∈ {=, <, . . . })
r .a θ Constant or Constant θ r .a

c© Jens Teubner · Information Systems · Summer 2014 125

TRC Formulas

A formula is then recursively defined to be one of the following:

any atomic formula

¬F , F1 ∧ F2, F1 ∨ F2

∃t : F (t, . . .)

∀t : F (t, . . .)

where F and Fi are formulas and t a tuple variable.

Quantifiers ∃ and ∀ bind the variable t; t may occur free in F .

A TRC query is an expression of the form{
t | F (t)

}
,

where F is a formula and t is the only free variable in F .

c© Jens Teubner · Information Systems · Summer 2014 126

Examples

All tuples in Ingredients where Alcohol = 0:{
t | t ∈ Ingredients ∧ t.Alcohol = 0

}
Names and prices of all non-alcoholic ingredients:{

t | ∃v : v ∈ Ingredients ∧ v .Alcohol = 0 ∧ t ← 〈v .Name, v .Price〉
}

Name all ingredients that can be ordered at ‘Shop Rite’:{
t | ∃u : u ∈ Suppliers ∧ ∃v : v ∈ Supplies ∧ ∃w : w ∈ Ingredients

∧ u.Name = ‘Shop Rite’ ∧ u.SupplID = v .SupplID

∧ v .IngrID = w .IngrID ∧ t ← 〈w .Name〉
}

c© Jens Teubner · Information Systems · Summer 2014 127

Tuple Relational Calculus ↔ SQL

Observe how Tuple Relational Calculus and SQL are related:

{
t | ∃u : u ∈ Suppliers ∧ ∃v : v ∈ Supplies ∧ ∃w : w ∈ Ingredients

∧ u.Name = ‘Shop Rite’ ∧ u.SupplID = v .SupplID

∧ v .IngrID = w .IngrID ∧ t ← 〈w .Name〉
}

In SQL:

SELECT w.Name

FROM Suppliers AS u, Supplies AS v, Ingredients AS w

WHERE u.Name = ’Shop Rite’ AND u.SupplID = v.SupplID

AND v.IngrID = w.IngrID

c© Jens Teubner · Information Systems · Summer 2014 128

Expressive Power

Idea:

Use tuple relational calculus (; SQL) as a declarative front-end

language for relational databases.

Questions:

Can all relational algebra expressions also expressed using TRC?

Can all TRC queries expressed using relational algebra?
(That is, can all TRC queries be answered with an execution engine that

implements the algebraic operators?)

Answer?

No!

c© Jens Teubner · Information Systems · Summer 2014 129

Expressive Power

Consider the TRC query{
t | ¬(t ∈ Ingredients)

}
(return all tuples that are not in the Ingredients table).

The set of tuples described by this query is infinite.8

Relational algebra expressions operate over (and produce) only

relations of finite size.

→ The above TRC query is not expressible in relational algebra.

8Or bound only by the (very large) domains for the attributes in Ingredients.
c© Jens Teubner · Information Systems · Summer 2014 130

Safe Tuple Relational Calculus

The query on the previous slide was an example of an unsafe TRC query.

In practice, queries with an infinite result are rarely meaningful.

Thus:

Restrict TRC to allow only queries with a finite result.

(We will refer to the set of allowed queries as the safe TRC.)

“Trick:”

Define safe TRC based on syntactic restrictions on the formula

language.

→ � Why “syntactic”?

c© Jens Teubner · Information Systems · Summer 2014 131

Safe Tuple Relational Calculus

A formula F in the tuple relational calculus is called safe iff

1 it contains no universal quantifiers (∀),

2 in each F1 ∨ F2, F1 and F2 have only one free variable and this is the

same variable in F1 and F2,

3 in all maximal conjunctive sub-formulae F1 ∧ F2 ∧ · · · ∧ Fk , a variable

t may be used in a formula Fi only after it has been limited

(“bound”) in a formula Fj , j < i .

A formula Fj limits t iff

Fj ≡ t ∈ R or

Fj ≡ t ← [X1, . . . ,Xk]
t appears free in Fj and Fj itself is a safe TRC formula.

All free variables of a maximal conjunctive sub-formula must be

limited.

4 negation only occurs in a conjunction as in 3 .

c© Jens Teubner · Information Systems · Summer 2014 132

Safe TRC ↔ SQL

SQL is also “safe” in that sense.

→ All tuple variables must be bound (“limited”) in the FROM part.

SQL is not purely based on safe TRC, but includes a combination of

Safe TRC,

Relational Algebra, (� Which example did we already see?)

Additional constructs, such as aggregation.

c© Jens Teubner · Information Systems · Summer 2014 133

Equivalence of Relational Algebra and Safe TRC

Theorem

Relational algebra and safe tuple relational calculus are equivalent.

This equivalence

guarantees expressiveness, e.g., for SQL,

yet allows query compilation into relational algebra (for query

optimization and execution).

The theorem can be proven in a constructive way:

Give translation rules that compile any safe TRC query into

relational algebra and vice versa.

→ The TRC → algebra direction already instructs us how to build a

query compiler.

c© Jens Teubner · Information Systems · Summer 2014 134

Relational Algebra → Safe TRC

Goal: A function TRC that translates any algebra expression into a Safe

TRC formula.

The interesting part is to derive the formula F to construct {t | F (t)}.

Thus:

Find T(v ,Exp). Given the name of a variable v and an algebraic

(sub)expression Exp, T(v ,Exp) constructs a formula, such that

TRC
(

Exp
)
:=
{

t | T(t,Exp)
}

is the TRC equivalent for Exp and T(t,Exp) is safe.

c© Jens Teubner · Information Systems · Summer 2014 135

Relational Algebra → Safe TRC

Example:

T(v ,R) := v ∈ R .

Then,

TRC
(

R
)
:=
{

t | T(t,R)
}
=
{

t | t ∈ R
}
.

Strategy: Syntax-Driven Translation:

T
(

v ,R
)

:= v ∈ R (see above)

T
(

v , σp (Exp)
)

:= ?

T
(

v , πL (Exp)
)

:= ?

T
(

v ,Exp1 × Exp2
)

:= ?

T
(

v ,Exp1 ∪ Exp2
)

:= ?

T
(

v ,Exp1 − Exp2
)

:= ?

(Next: Find a translation for each of the five basic algebra operators.)

c© Jens Teubner · Information Systems · Summer 2014 136

σp(Exp) → Safe TRC

Algebra selection operator σp:

T
(

v , σp (Exp)
)

:= T
(

v ,Exp
)
∧ p(v) ,

where p(v) is the predicate p in σp and all attribute names in p are

qualified using the variable name v .

→ The resulting formula is safe if the result of the recursive

construction T(v ,Exp) is safe.

Remaining rules for T(v ,Exp) → exercises.

c© Jens Teubner · Information Systems · Summer 2014 137

Safe TRC → Relational Algebra

Goal: A function Alg that translates any safe TRC query into a valid

algebra expression.

�
Safe TRC cannot simply be translated bottom-up,

because some of its sub-formulas might be un-safe

if considered in isolation.

Example: {t | t ∈ R ∧ t /∈ S} is legal, but the sub-formula t /∈ S would

violate rule 3 for safe TRC on slide 132 (and {t | ¬ (t ∈ S)} is not

expressible in relational algebra).

c© Jens Teubner · Information Systems · Summer 2014 138

Safe TRC → Relational Algebra

Thus:

Carry context information through the translation process with help of

an auxiliary function A:

Alg ({t | F (t)}) := πt.*
(
A ({},F ∧ true)

)
.

Idea:

As input, A receives a partial algebra plan (initialized with {}) and

a TRC formula.

A “consumes” a conjunctive formula F1 ∧ · · · ∧ Fk piece-by-piece.

The partial algebra plan is used to provide context and accumulate

the overall compilation result.

We use {} × E := E and F ≡ F ∧ true to simplify compilation rules.

c© Jens Teubner · Information Systems · Summer 2014 139

Safe TRC → Relational Algebra

Let us look at simple formulas first:

A(E , t ∈ R ∧ F) := A

×

E πt.A1:A1,...,t.Ak :Ak

R

,F

 (1)

A(E , t ← [X1, . . . ,Xk] ∧ F) := A

πsch(E),t.A1:X1,...,t.Ak :Xk
E

,F

 (2)

A(E ,X θ Y ∧ F) := A (σXθYE ,F) (3)

A(E , true) := E (4)

c© Jens Teubner · Information Systems · Summer 2014 140

Safe TRC → Relational Algebra

� Translation of

{r | r ∈ R ∧ s ∈ S ∧ r .A = s.A ∧ s.B = 42} ?

↓

πr .*

σs.B=42

σr .A=s.A

×
×

{} R

S

≡
πr .*

σs.B=42

1r .A=s.A

R S

� The above TRC expression is not quite correct. Why?

→ In {r | F (r)}, only r is allowed to occur free in F .

c© Jens Teubner · Information Systems · Summer 2014 141

Safe TRC → Relational Algebra — Detour

Looks familiar?

This is (almost) exactly how your database system compiles SQL!

SELECT p.*

FROM Professors AS p, Courses AS c

WHERE p.ID = c .heldBy

AND c .courseID = 42

↓{
p | p ∈ Professors ∧ c ∈ Courses

∧ p.ID = c .heldBy ∧ C .courseID = 42
}

↓

πp.*
(
σp.courseID=42 (Professors 1p.ID=c.heldBy Courses)

)

c© Jens Teubner · Information Systems · Summer 2014 142

Safe TRC → Relational Algebra

Time to complete our rule set. . .

A (E , (∃v : G) ∧ F) := A

(
πsch(E)

A(E ,G ∧ true)
,F

)
(5)

A (E , (G1 ∨ G2) ∧ F) := A

(∪

A(E ,G1 ∧ true) A(E ,G2 ∧ true)
,F

)
(6)

A (E ,¬G ∧ F) := A

−

E πsch(E)

A(E ,G ∧ true)

,F

 (7)

c© Jens Teubner · Information Systems · Summer 2014 143

Safe TRC → Relational Algebra

Notes:

In Rule (5), the ∃ quantifier introduces a new variable, which

appears free in G . After compiling G , we “project away” the

additional column(s).

In Rule (6), both parts of the ∪ must be schema-compatible,

because (by rule 2 for safe TRC on slide 132) G1 and G2 must have

the same free variable.

Observe, in Rule (7), how we can make use of the difference

operator, because we made sure that all free variables in G were

bound previously (and are thus part of E).

c© Jens Teubner · Information Systems · Summer 2014 144

Safe TRC → Relational Algebra (Example)

� Translation of

{r | r ∈ R ∧ (∃s : s ∈ S ∧ r .A = s.A ∧ s.B = 42)} ?

↓

πr .*

πsch(R)

σs.B=42

σr .A=s.A

×
×

{} R

S

≡
πr .*

σs.B=42

1r .A=s.A

R S

→ This is the correct substitute TRC expression (and its translation)

for the one shown earlier on slide 141.

c© Jens Teubner · Information Systems · Summer 2014 145

Limitations of Relational Algebra / Safe TRC

Suppose a database contains a Flights relation

Flights

From To FlightNo

ZRH DRS OL 277

DRS MUC LH 2127
...

...
...

,

where a tuple 〈f , t, n〉 indicates that there is a flight from f to n with

flight number n.

The algebra expression

πTo
(
πFrom←To(σFrom=‘ZRH’(Flights)) 1 Flights

)
then returns airport codes for all destinations that can be reached with

one stop from Zurich.

c© Jens Teubner · Information Systems · Summer 2014 146

Limitations of Relational Algebra / Safe TRC

More generally, we can use an n-fold self join to find destinations

reachable with n stops.

→ We can write down that self join for every known value of n.

→ But it is impossible to express the transitive closure in relational

algebra.
(I.e., we cannot write a query that returns reachable destinations with a

trip of any length.)

This implies that relational algebra is not computationally complete.

→ This might seem unfortunate. But it is a consequence of the

desirable guarantee that query evaluation always terminates in

relational algebra.

c© Jens Teubner · Information Systems · Summer 2014 147

Expressiveness of SQL

SQL is slightly more powerful than relational algebra (≡ Safe TRC),

e.g.,

aggregation (e.g., the SQL COUNT operation)

(very limited) support for recursion
Reachability queries as shown before can actually be expressed in recent

versions of SQL.

explicit support for special use cases (e.g., windowing)

These extensions have been carefully designed to keep the termination

guarantees, however.

c© Jens Teubner · Information Systems · Summer 2014 148

Wrap-Up

Relations:

finite sets of tuples

Relational Algebra:

expression-based query language

→ operators σp, πL, ×, ∪, −, 1p, . . .

→ used internally by DBMSs for optimization and evaluation

(Safe) Tuple Relational Calculus:

declarative query language

→ {t | F (t)}
→ TRC inspired the design of the SQL language

Expressiveness:

relational algebra = safe TRC ⊆ SQL

c© Jens Teubner · Information Systems · Summer 2014 149

	The Relational Data Model
	The Relational Model
	Sets of Tuples

	Querying Relational Data
	Relational Algebra
	Selection
	Projection
	Cartesian Product
	Set Operations
	Monotonicity
	The Join Operator
	Division
	Algebraic Laws
	Query Plans, Optimization

	Procedural vs. Declarative
	Tuple Relational Calculus
	TRC Formulas
	Expressive Power
	Safe Tuple Relational Calculus
	Equivalence of Relational Algebra and Safe TRC

