Information Systems (Informationssysteme)

Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de

Summer 2014

Part V

The Relational Data Model

The relational model was proposed in 1970 by Edgar F. Codd:⁷

"The term **relation** is used here in its accepted mathematical sense. Given sets S_1, S_2, \ldots, S_n (not necessarily distinct), R is a relation of these n sets if it is a set of n-tuples each of which has its first element from S_1 , its second element from S_2 , and so on."

In other words, a relation R is a subset of a Cartesian product

$$R \subseteq S_1 \times S_2 \times \cdots \times S_n$$

R contains *n*-tuples, where the *i*th field must take values from the set S_i (S_i is the *i*th **domain** of *R*).

⁷E. F. Codd. A Relational Model of Data for Large Shared Data Banks. *Communications of the ACM*, vol. 13(6), June 1970.

© Jens Teubner · Information Systems · Summer 2014

Relations are Sets of Tuples

A relation is a set of *n*-tuples, *e.g.*, representing cocktail ingredients:

Relations can be illustrated as tables:

Ingredients					
Name	Alcohol	InStock	Price		
Orange Juice	0.0	12	2.99		
Campari	25.0	5	12.95		
Mineral Water	0.0	10	1.49		
Bacardi	37.5	3	16.98		

 $\rightarrow\,$ Each column must have a **unique name** (within one relation).

A relation consists of two parts:

1 Schema: The schema of a relation is its list of attributes:

sch(Ingredients) = (Name, Alcohol, InStock, Price) .

Each attribute has an associated **domain** that specifies valid values for that column:

$$dom(Alcohol) = DECIMAL(3,2)$$
.

Often, key constraints are considered part of the schema, too.

2 Value (or instance): The value/instance val(*R*) of a relation *R* is the set of tuples (rows) that *R* currently contains.

Relations are sets of tuples:

- The ordering among tuples/rows is undefined.
- A relation cannot contain duplicate rows.
 - $\rightarrow\,$ A consequence is that every relation has a key. Use the set of all attributes if there is no shorter key.

Attribute domains must be **atomic**:

- Column entries must not have an internal structure or contain "multiple values".
- A table like

Ingredients				
Name	Alcohol	SoldBy		
		Supplier Price		
Orange Juice	0.0	A&P Supermarket 2.49		
		Shop Rite 2.79		
Campari		Supplier Price		
	25.0	Joe's Liquor Store 14.99		

is **not** a valid relation.

Since relations are sets in the mathematical sense, we can use mathematical formalisms to reason over relations.

In this course we will use

- **relational algebra** and
- relational calculus

to express queries over relational data.

Both are used **internally** by any decent relational DBMS.

Knowledge of both languages will help in understanding SQL and relational database systems in general. In mathematics, an **algebra** is a system that consists of

- a **set** (the carrier) and
- **operations** that are closed with respect to the set.

In the case of relational algebra,

- the carrier is the set of all finite relations.
- We'll get to know its operations in a moment.

Algebraic operators are **closed** with respect to their set.

- Every operator takes as input one or more relations
 (The number of input operands to an operator *f* is called the **arity** of *f*.)
- The output is again a relation.

Operators and relations can be composed into expressions (or queries).

The **selection** σ_p selects a **subset** of the tuples of a relation, namely those which satisfy the **predicate** *p*.

$$\sigma_{A=1} \begin{pmatrix} A & B \\ 1 & 3 \\ 1 & 4 \\ 2 & 5 \end{pmatrix} = \begin{bmatrix} A & B \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

- Selection acts like a **filter** on its input relation.
- Selection leaves the **schema** of the relation unchanged:

$$\operatorname{sch}(\sigma_p(R)) = \operatorname{sch}(R)$$
 .

■ This best compares to the WHERE clause in SQL.

The **predicate** p is a Boolean expressions composed of

- literal constants,
- attribute names, and
- arithmetic (+, -, *, ...), comparison $(=, >, \le, ...)$, and Boolean operators (\land, \lor, \neg) .
- p is evaluated for each tuple in isolation.
 - → Quantifiers (∃, \forall) or nested relational algebra expressions are not permitted within predicates.

Relational Algebra: Projection

The **projection** π_L eliminates all **attributes** (columns) of the input relation but those listed in the **projection list** *L*.

$$\pi_{A,C} \begin{pmatrix} A & B & C \\ 1 & 3 & 2 \\ 1 & 3 & 5 \\ 2 & 5 & 2 \end{pmatrix} = \begin{pmatrix} A & C \\ 1 & 2 \\ 1 & 5 \\ 2 & 2 \end{pmatrix}$$

- Intuitively: " σ_p discards rows; π_L discards columns."
- Database slang: "All attributes not in L are projected away."
- Projection can also be used to **re-order** columns.
- Projection affects the schema: sch(π_L(R)) = L.
 (All attributes listed in L must exist in sch(R).)

Projection might **change** the cardinality (*i.e.*, the number of rows) of a relation.

$$\pi_{A,B} \begin{pmatrix} A & B & C \\ 1 & 3 & 2 \\ 1 & 3 & 5 \\ 2 & 5 & 2 \end{pmatrix} = \begin{bmatrix} A & B \\ 1 & 3 \\ 2 & 5 \end{bmatrix}$$

• Remember that relations are **duplicate-free sets**!

Relational Algebra: Projection

Often, π_L is used also to express **additional functionality** (needed, *e.g.*, to implement SQL):

Column renaming:

$$\pi_{B_1\leftarrow A_{i_1},\ldots,B_k\leftarrow A_{i_k}}(R)$$
 .

Computations:

$$\pi_{Name, Value \leftarrow InStock*Price}$$
 (Ingredients)

Alternatively, a separate **re-naming operator** ρ_L is often seen to express such functionality, *e.g.*,

$$\varrho_{B_1 \leftarrow A_{i_1},\ldots,B_k \leftarrow A_{i_k}}(R)$$
.

Often, ':' is used instead of ' \leftarrow ' (*e.g.*, $\rho_{B_1:A_{i_1},\ldots,B_k:A_{i_k}}(R)$).

Relational Algebra: Projection and SQL

In SQL, duplicate rows are **not** eliminated automatically.

 \rightarrow Request duplicate elimination explicitly using keyword DISTINCT.

SELECT DISTINCT Alcohol, InStock FROM Ingredients WHERE Alcohol=0

In SQL, projection is expressed using the SELECT clause:

$$\pi_{B_1 \leftarrow E_1, \dots, B_k \leftarrow E_k}(R) \downarrow$$

SELECT DISTINCT E_1 AS B_1 , ..., E_k AS B_k FROM R

Relational Algebra: Cartesian Product

The **Cartesian product** of two relations R and S is computed by concatenating each tuple $r \in R$ with each tuple $s \in S$.

The Cartesian product contains all columns from both inputs:

$$\operatorname{sch}(R \times S) = \operatorname{sch}(R) + \operatorname{sch}(S)$$

- \rightarrow R and S must not share any attribute names.
- \rightarrow If they do, need to **re-name** first (using π/ϱ).

We already learned how a Cartesian product can be expressed in SQL:

 SQL systems will not care about the duplicate column names. (In fact, they allow, *e.g.*, computed values with no column name at all.)

• Unique column names will be **generated** by the system if necessary.

The two **set operators** \cup (**union**) and - (**set difference**) complete the set of relational algebra operators:

Notes:

In $R \cup S$ and R - S, R and S must be **schema compatible**:

$$\operatorname{sch}(R\cup S)=\operatorname{sch}(R-S)=\operatorname{sch}(R)=\operatorname{sch}(S)$$
 .

- For $R \cup S$, R and S need not be disjoint.
- For R S, S need not be a subset of R.
- In SQL, \cup and are available as UNION and EXCEPT, e.g.,

SELECT	Name
FROM	Cocktails
UNION	
SELECT	Name
FROM	Ingredients

The five basic operations of relational algebra are:

- Any other relational algebra operator (we'll soon see some of them) can be **derived** from those five.
- A compact set of operators is a good basis for software (*e.g.*, query optimizers) or database theoreticians to **reason** over a query or over the language.

Observe that the first four operators, σ , π , ×, and \cup , are **monotonic**:

New data added to the database might only increase, but never decrease the size of their output. *E.g.*,

$$R \subseteq S \Rightarrow \sigma_p(R) \subseteq \sigma_p(S)$$
 .

- For queries composed only of these operators, database insertion **never invalidates** a correct answer.
- **Difference (**-) is the only **non-monotonic** operator among the basic five.

For queries with a non-monotonic semantics, e.g.,

- "Which ingredients cannot be ordered at 'Liquors & More'?"
- "Which ingredient has the highest percentage of alcohol?"
- " "Which supplier offers all ingredients in the database?"

the operators σ , π , \times , \cup are **not sufficient** to formulate the query. Such queries **require** set difference.

Sormulate the first of these queries in relational algebra.

The combination σ -× occurs particularly often.

 \rightarrow The σ - \times pair can be used to **combine** data from multiple tables, in particular by following **foreign key relationships**.

Example:

 $\sigma_{ContactPersons.ContactFor=Suppliers.SupplD}(Suppliers \times ContactPersons)$

Because of this, we introduce a **short notation** for the scenario:

$$R \bowtie_p S := \sigma_p (R \times S)$$

and call operation \bowtie_p a **join** ("*R* and *S* are joined").

With a join operator, the example on the previous slide would read:

Suppliers M_{ContactPersons.ContactFor=Suppliers.SupplD} ContactPersons

or (omitting redundant relation names in the predicate):

Suppliers $\bowtie_{ContactFor=SupplD}$ ContactPersons

The basic join operator exactly expands to a σ -× combination as shown on the previous slide! The join operator could be used to express **any** predicate over R and S (though this tends to be not so meaningful in practice).

 $\textit{Ingredients} \bowtie_{\textit{Flavor} \leq \textit{Email} \land \textit{Alcohol} < 10} \textit{ContactPersons}$

The pattern

$$R \Join_{A_i heta B_j} S$$
 ,

where A_i is an attribute from R, B_j an attribute from S, and $\theta \in \{=, \neq, <, \leq, >, \geq\}$ is often called a θ join (theta join). The case $\theta \equiv =$ is also called an **equi join**.

The Natural Join

The most frequent join operation is an (equi) join that follows a **foreign key constraint**.

It is good practice to use the **same attribute name** for a **primary key** and for **foreign keys** that reference it.

E.g.,

Cocktails					
<u>CockID</u>	CName Alcohol GlassID				
:	:	:	:		

Glasses			
GlassID	Volume		
÷	:	÷	

(where GlassID in Cocktails references the GlassID in Glasses).

To simplify notation for that common case, we introduce the following convention:

We call this situation a **natural join**.

The Natural Join

Based on the example schema on slide 109, the natural join

Cocktails ⋈ Glasses

would perform the (intuitively expected) join over GlassID columns (Cocktails.GlassID = Glasses.GlassID) and have the return schema

Cocktails					
CockID	CName	Alcohol	GlassID	GlassName	Volume
÷	:	:	÷	÷	:

The example worked out, because I used **different column names** for all non-join attributes. Otherwise, ⋈ would have implicitly joined over, *e.g.*, *Name*, too. Consider the join expression

Suppliers \bowtie ContactPersons ,

where we assume that *ContactPerson* has a foreign key *SuppID* (and no other column pairs with same name exist).

The query will report all suppliers with their contact person.

But:

 Suppliers where no contact person is stored in *ContactPersons* will not appear in the result. The join effectively implies a filtering behavior. Sometimes, this **filtering behavior** is **everything we really need** from the join operation.

E.g., "All suppliers where we know a contact person."

 $\pi_{Suppliers.*}(Suppliers \bowtie ContactPersons)$,

For this situation, database people introduced another explicit notation:

$$R\ltimes S := \pi_{\operatorname{sch}(R)}(R\Join S) \qquad R\ltimes_p S := \pi_{\operatorname{sch}(R)}(R\Join_p S)$$
 ,

i.e., compute the join $R \bowtie S$, but keep only colums that come from R. This operation is also called a **semi join**. [©] What if I want the opposite, all suppliers where we do not know a contact person?

In other cases, the filtering effect is **not** desired.

To obtain all suppliers with their contact person **without** discarding *Supplier* tuples, use the **outer join** (here: **left outer join**):

Suppliers \bowtie ContactPersons .

Assuming the input

Suppliers			ContactPersons	
SuppID	SuppName			
1	Shop Rite		Suppid	Contactivame
2			1	Mary Shoppins
2	Liquors & More		3	Joe Drinkmore
3	Joe's Liquor Store		Ŭ	000 2

what is the result of the above left outer join?

For certain kinds of queries, the **division** operator is useful.

Given two relations

the division

 $R \div S$

returns those A values a_i , such that for **every** B value b_j in S there is a tuple $\langle a_i, b_j \rangle$ in R.

Example

The division would be useful to, *e.g.*, ask for suppliers that offer **all** ingredients:

Suppliers
$$\bowtie$$
 (Supplies $\div \pi_{IngrID}(Ingredients)$)

Relational algebra operators may have interesting properties, e.g.,

• The join satisfies the **associativity condition**:

$$(R \bowtie S) \bowtie T \equiv R \bowtie (S \bowtie T)$$
.

(We can thus often omit parentheses in "join chains": $R \bowtie S \bowtie T$.)

Join is not commutative, however, unless it is followed by a projection (to re-order columns):

$$\pi_L(R \bowtie S) \equiv \pi_L(S \bowtie R)$$
.

■ If *p* only refers to attributes in *S*, then

$$\sigma_p(R \bowtie S) \equiv R \bowtie \sigma_p(S)$$

(this is also known as **selection pushdown**).

Algebraic Expressions

Relational Algebra is an **expression-oriented language**.

- $\rightarrow\,$ Expressions consume and produce relations.
- $\rightarrow\,$ Results of expressions can be input to other expressions.

E.g.,
$$\left(\left(\pi_{\textit{IngrID}}\left(\sigma_{\textit{Name}='Campari'}, \textit{Ingredients}\right)\right) \bowtie Supplies\right) \bowtie Suppliers$$

Another way of looking at this is an **operator tree**:

Such operator trees imply an evaluation order.

- Computation proceeds **bottom-up** (the evaluation order of sibling branches is not defined).
- Operator trees are thus a useful tool to describe evaluation strategy and order.

Query Plans

Most relational query optimizers use operator trees internally.

- $\rightarrow\,$ The operator tree leads to a query plan or execution plan.
- $\rightarrow\,$ The **execution engine** is defined by operator implementations for all of the algebraic operators.
- E.g., IBM DB2 execution plan:

Plan trees can be **re-written** using **algebraic laws**:

E.g.,

selection pushdown: rewrite expressions to apply selection predicates early:

$$\sigma_p(R \bowtie S) \rightarrow R \bowtie \sigma_p(S)$$

(we saw this algebraic law before).

decide join order:

$$\pi_L(R \bowtie S \bowtie T) \rightarrow \pi_L(T \bowtie (S \bowtie R))$$

The **rewrite direction** is often guided by **heuristics** and/or **cost estimations** (~> Course 'Architecture of Database Systems').

The execution order implied by algebraic expressions gives relational algebra a **procedural nature**.

- $\rightarrow\,$ This is good for query optimization.
- \rightarrow It is **not so good** for query formulation (*e.g.*, by users).
 - Want to leave execution strategies up to the database.

For query formulation, we'd much rather like to have a **fully declarative way** to describe queries.

- \rightarrow Specify what you want as a result, not how it can be computed.
- → "I want all tuples that look like ..." or "I want all tuples that satisfy the predicate ..."

In mathematics, a common way to describe sets is

 $\{x \mid p(x)\}$,

meaning that the set contains all x that satisfy a predicate p.

This inspires the **tuple relational calculus (TRC)**:

In a tuple relational calculus query

 $\left\{ t \mid F(t)
ight\}$,

t is a **tuple variable**, F is a **formula** that describes how tuples t must look like to qualify for the result.

Formulas form the heart of the TRC. The **language** for formulas is a subset of **first-order logic**:

An atomic formula is one of the following:

- t ∈ RelationName
- $t \leftarrow \langle X_1, \ldots, X_k \rangle$ (tuple constructor)
- $r.a\theta s.b$ (r, s tuple variables; a, b attributes in $r, s; \theta \in \{=, <, ...\}$)
- **•** $r.a \theta$ Constant or Constant θ r.a

TRC Formulas

A formula is then recursively defined to be one of the following:

- any atomic formula
- $\blacksquare \neg F, F_1 \land F_2, F_1 \lor F_2$
- $\blacksquare \exists t : F(t, \dots)$
- $\bullet \forall t : F(t, \ldots)$

where F and F_i are formulas and t a tuple variable.

Quantifiers \exists and \forall **bind** the variable *t*; *t* may occur **free** in *F*.

A TRC query is an expression of the form

 $\left\{ t \mid F(t)
ight\}$,

where F is a formula and t is the only free variable in F.

All tuples in *Ingredients* where Alcohol = 0:

$$ig\{t \mid t \in \mathit{Ingredients} \land t. \mathit{Alcohol} = 0ig\}$$

Names and prices of all non-alcoholic ingredients:

 $\{t \mid \exists v : v \in Ingredients \land v. Alcohol = 0 \land t \leftarrow \langle v. Name, v. Price \rangle\}$

Name all ingredients that can be ordered at 'Shop Rite':

$$\{t \mid \exists u : u \in Suppliers \land \exists v : v \in Supplies \land \exists w : w \in Ingredients \land u.Name = `Shop Rite' \land u.SupplID = v.SupplID \land v.IngrID = w.IngrID \land t \leftarrow \langle w.Name \rangle \}$$

Observe how Tuple Relational Calculus and SQL are related:

$$\{t \mid \exists u : u \in Suppliers \land \exists v : v \in Supplies \land \exists w : w \in Ingredients \land u.Name = `Shop Rite' \land u.SupplID = v.SupplID \land v.IngrID = w.IngrID \land t \leftarrow \langle w.Name \rangle \}$$

In SQL:

SELECT w.Name
FROM Suppliers AS u, Supplies AS v, Ingredients AS w
WHERE u.Name = 'Shop Rite' AND u.SupplID = v.SupplID
AND v.IngrID = w.IngrID

Idea:

■ Use tuple relational calculus (~→ SQL) as a declarative front-end language for relational databases.

Questions:

- Can all relational algebra expressions also expressed using TRC?
- Can all TRC queries expressed using relational algebra? (That is, can all TRC queries be answered with an execution engine that implements the algebraic operators?)

Answer?

No!

Consider the TRC query

```
\{t \mid \neg (t \in \textit{Ingredients})\}
```

(return all tuples that are **not** in the *Ingredients* table).

- The set of tuples described by this query is **infinite**.⁸
- Relational algebra expressions operate over (and produce) only relations of **finite size**.
- \rightarrow The above TRC query is **not** expressible in relational algebra.

⁸Or bound only by the (very large) domains for the attributes in *Ingredients*.

The query on the previous slide was an example of an unsafe TRC query.

In practice, queries with an infinite result are rarely meaningful.

Thus:

 Restrict TRC to allow only queries with a finite result. (We will refer to the set of allowed queries as the safe TRC.)

"Trick:"

- Define safe TRC based on syntactic restrictions on the formula language.
 - \rightarrow Why "syntactic"?

Safe Tuple Relational Calculus

A formula F in the tuple relational calculus is called **safe** iff

- **1** it contains no universal quantifiers (\forall) ,
- 2 in each $F_1 \lor F_2$, F_1 and F_2 have only one free variable and this is the same variable in F_1 and F_2 ,
- in all maximal conjunctive sub-formulae F₁ ∧ F₂ ∧ · · · ∧ F_k, a variable t may be used in a formula F_i only after it has been limited ("bound") in a formula F_j, j < i. A formula F_j limits t iff

•
$$F_j \equiv t \in R$$
 or

•
$$F_j \equiv t \leftarrow [X_1, \ldots, X_k]$$

• *t* appears free in F_j and F_j itself is a safe TRC formula.

All free variables of a maximal conjunctive sub-formula must be limited.

4 negation only occurs in a conjunction as in 3.

SQL is also "safe" in that sense.

 $\rightarrow\,$ All tuple variables must be bound ("limited") in the FROM part.

SQL is not purely based on safe TRC, but includes a combination of

Safe TRC,

- Relational Algebra, (^(S) Which example did we already see?)
- Additional constructs, such as **aggregation**.

Equivalence of Relational Algebra and Safe TRC

Theorem

Relational algebra and safe tuple relational calculus are equivalent.

This equivalence

- guarantees expressiveness, e.g., for SQL,
- yet allows query compilation into relational algebra (for query optimization and execution).

The theorem can be proven in a **constructive** way:

- Give **translation rules** that compile any safe TRC query into relational algebra and vice versa.
- \rightarrow The TRC \rightarrow algebra direction already instructs us how to build a **query compiler**.

Goal: A function \mathbb{TRC} that translates any algebra expression into a Safe TRC formula.

The interesting part is to derive the **formula** F to construct $\{t \mid F(t)\}$.

Thus:

■ Find T(v, Exp). Given the name of a variable v and an algebraic (sub)expression Exp, T(v, Exp) constructs a formula, such that

$$\mathbb{TRC}(Exp) := \{t \mid \mathbb{T}(t, Exp)\}$$

is the TRC equivalent for Exp and $\mathbb{T}(t, Exp)$ is safe.

Relational Algebra \rightarrow Safe TRC

Example:

$$\mathbb{T}(v, R) := v \in R$$
.

Then,

$$\mathbb{TRC}(R) := ig\{t \mid \mathbb{T}(t,R)ig\} = ig\{t \mid t \in Rig\}$$
 .

Strategy: Syntax-Driven Translation:

$$\mathbb{T}(v, R) := v \in R \quad (\text{see above})$$
$$\mathbb{T}(v, \sigma_p(Exp)) := ?$$
$$\mathbb{T}(v, \pi_L(Exp)) := ?$$
$$\mathbb{T}(v, Exp_1 \times Exp_2) := ?$$
$$\mathbb{T}(v, Exp_1 \cup Exp_2) := ?$$
$$\mathbb{T}(v, Exp_1 - Exp_2) := ?$$

(Next: Find a translation for each of the five basic algebra operators.)

Algebra **selection** operator σ_p :

$$\mathbb{T}(v, \sigma_p(Exp)) := \mathbb{T}(v, Exp) \wedge p(v)$$
,

where p(v) is the predicate p in σ_p and all attribute names in p are qualified using the variable name v.

→ The resulting formula is **safe** if the result of the recursive construction T(v, Exp) is safe.

Remaining rules for $\mathbb{T}(v, Exp) \rightarrow$ exercises.

Goal: A function Alg that translates any safe TRC query into a valid algebra expression.

Safe TRC cannot simply be translated bottom-up, because some of its sub-formulas might be un-safe if considered in isolation.

Example: $\{t \mid t \in R \land t \notin S\}$ is legal, but the sub-formula $t \notin S$ would violate rule **3** for safe TRC on slide 132 (and $\{t \mid \neg (t \in S)\}$ is not expressible in relational algebra).

Thus:

Carry **context information** through the translation process with help of an auxiliary function \mathbb{A} :

$$\mathbb{Alg}\left(\left\{t \mid F(t)
ight\}
ight) \mathrel{\mathop:}= \pi_{t.*}ig(\mathbb{A}\left(\left\{
ight\}, F \wedge \mathsf{true}
ight)ig)$$
 .

Idea:

- As input, A receives a **partial algebra plan** (initialized with {}) and **a TRC formula**.
- A "consumes" a conjunctive formula $F_1 \land \cdots \land F_k$ piece-by-piece.
- The partial algebra plan is used to provide context and accumulate the overall compilation result.
- We use $\{\} \times E := E$ and $F \equiv F \wedge$ true to simplify compilation rules.

Safe TRC \rightarrow Relational Algebra

Let us look at simple formulas first:

$$\mathbb{A}(E, t \in R \land F) := \mathbb{A}\begin{pmatrix} X & X \\ F & \pi_{t.A_{1}:A_{1},...,t.A_{k}:A_{k}}, F \\ F & F \end{pmatrix} (1)$$

$$\mathbb{A}(E, t \leftarrow [X_{1},...,X_{k}] \land F) := \mathbb{A}\begin{pmatrix} \pi_{\operatorname{sch}(E),t.A_{1}:X_{1},...,t.A_{k}:X_{k}} \\ F & F \end{pmatrix} (2)$$

$$\mathbb{A}(E, X \theta Y \land F) := \mathbb{A}(\sigma_{X\theta Y}E, F) \qquad (3)$$

$$\mathbb{A}(E, \operatorname{true}) := E \qquad (4)$$

Safe TRC \rightarrow Relational Algebra

Stranslation of

$$\{r \mid r \in R \land s \in S \land r.A = s.A \land s.B = 42\} ?$$

[∞] The above TRC expression is not quite correct. Why?

Looks familiar?

This is (almost) exactly how your database system compiles SQL!

```
SELECT p.*
           FROM Professors AS p, Courses AS c
         WHERE p.ID = c.heldBy
            AND c. courselD = 42
      \{p \mid p \in Professors \land c \in Courses\}
           \land p.ID = c.heldBy \land C.courseID = 42
\pi_{p,*}(\sigma_{p,courselD=42}(Professors \bowtie_{p,ID=c,heldBv} Courses))
```

Time to complete our rule set...

$$\mathbb{A}(E, (\exists v : G) \land F) := \mathbb{A}\begin{pmatrix} \pi_{\mathsf{sch}(E)} \\ \mathbb{A}(E, G \land \mathsf{true}), F \end{pmatrix}$$
(5)
$$\mathbb{A}(E, (G_1 \lor G_2) \land F) := \mathbb{A}\begin{pmatrix} \bigvee \\ \mathbb{A}(E, G_1 \land \mathsf{true}), \mathbb{A}(E, G_2 \land \mathsf{true}), F \end{pmatrix}$$
(6)
$$\mathbb{A}(E, \neg G \land F) := \mathbb{A}\begin{pmatrix} \neg \\ \mathbb{A}(E, G \land \mathsf{true}), \mathbb{A}(E, G \land \mathsf{true}), F \end{pmatrix}$$
(7)

п

Notes:

- In Rule (5), the \exists quantifier introduces a new variable, which appears free in *G*. After compiling *G*, we "project away" the additional column(s).
- In Rule (6), both parts of the ∪ must be schema-compatible, because (by rule 2 for safe TRC on slide 132) G₁ and G₂ must have the same free variable.
- Observe, in Rule (7), how we can make use of the difference operator, because we made sure that all free variables in *G* were bound previously (and are thus part of *E*).

Safe TRC \rightarrow Relational Algebra (Example)

Stranslation of

$$\{r \mid r \in R \land (\exists s : s \in S \land r.A = s.A \land s.B = 42)\} ?$$

Limitations of Relational Algebra / Safe TRC

Suppose a database contains a *Flights* relation

where a tuple $\langle f, t, n \rangle$ indicates that there is a flight from f to n with flight number n.

The algebra expression

$$\pi_{To}(\pi_{From \leftarrow To}(\sigma_{From='ZRH'}(Flights)) \bowtie Flights))$$

then returns airport codes for all destinations that can be reached with one stop from Zurich.

More generally, we can use an n-fold self join to find destinations reachable with n stops.

- \rightarrow We can write down that self join for every known value of *n*.
- $\rightarrow\,$ But it is **impossible** to express the **transitive closure** in relational algebra.

(*l.e.*, we cannot write a query that returns reachable destinations with a trip of \mathbf{any} length.)

This implies that relational algebra is **not computationally complete**.

 $\rightarrow\,$ This might seem unfortunate. But it is a consequence of the desirable guarantee that **query evaluation always terminates** in relational algebra.

SQL is slightly more powerful than relational algebra (\equiv Safe TRC), *e.g.*,

- **aggregation** (*e.g.*, the SQL COUNT operation)
- (very limited) support for recursion
 Reachability queries as shown before can actually be expressed in recent versions of SQL.
- explicit support for special use cases (e.g., windowing)

These extensions have been carefully designed to keep the **termination guarantees**, however.

Wrap-Up

Relations:

finite sets of tuples

Relational Algebra:

expression-based query language

- \rightarrow operators σ_p , π_L , \times , \cup , -, \bowtie_p , ...
- $\rightarrow\,$ used internally by DBMSs for optimization and evaluation

(Safe) Tuple Relational Calculus:

declarative query language

 $\rightarrow \{t \mid F(t)\}$

 $\rightarrow\,$ TRC inspired the design of the SQL language

Expressiveness:

• relational algebra = safe TRC \subseteq SQL