Information Systems (Informationssysteme)

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2014

Part V

The Relational Data Model

The Relational Model

The relational model was proposed in 1970 by Edgar F. Codd: ${ }^{7}$
"The term relation is used here in its accepted mathematical sense. Given sets $S_{1}, S_{2}, \ldots, S_{n}$ (not necessarily distinct), R is a relation of these n sets if it is a set of n-tuples each of which has its first element from S_{1}, its second element from S_{2}, and so on."

In other words, a relation R is a subset of a Cartesian product

$$
R \subseteq S_{1} \times S_{2} \times \cdots \times S_{n}
$$

R contains n-tuples, where the i th field must take values from the set S_{i} (S_{i} is the i th domain of R).
${ }^{7}$ E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, vol. 13(6), June 1970.

Relations are Sets of Tuples

A relation is a set of n－tuples，e．g．，representing cocktail ingredients：

$$
\begin{aligned}
& \text { Ingredients }=\{\langle\text { "Orange Juice" , } 0.0,12,2.99\rangle, \\
& \text { 〈"Campari" , 25.0, 5,12.95〉, } \\
& \langle " M i n e r a l ~ W a t e r ", ~ 0.0,10, ~ 1.49\rangle \text {, } \\
& \text { 〈"Bacardi" } \quad 37.5,3,16.98\rangle \text { \} }
\end{aligned}
$$

Relations can be illustrated as tables：

Ingredients			
Name	Alcohol	InStock	Price
Orange Juice	0.0	12	2.99
Campari	25.0	5	12.95
Mineral Water	0.0	10	1.49
Bacardi	37.5	3	16.98

\rightarrow Each column must have a unique name（within one relation）．

Schema vs. Value

A relation consists of two parts:
1 Schema: The schema of a relation is its list of attributes:

$$
\operatorname{sch}(\text { Ingredients })=(\text { Name, Alcohol, InStock, Price }) .
$$

Each attribute has an associated domain that specifies valid values for that column:

$$
\operatorname{dom}(A l c o h o l)=\operatorname{DECIMAL}(3,2)
$$

Often, key constraints are considered part of the schema, too.
2 Value (or instance): The value/instance val(R) of a relation R is the set of tuples (rows) that R currently contains.

Sets of Tuples

Relations are sets of tuples:

- The ordering among tuples/rows is undefined.
- A relation cannot contain duplicate rows.
\rightarrow A consequence is that every relation has a key. Use the set of all attributes if there is no shorter key.

Atomic Values

Attribute domains must be atomic:
■ Column entries must not have an internal structure or contain "multiple values".

- A table like

Ingredients			
Name	Alcohol	SoldBy	
Orange Juice	0.0	Supplier	Price
		A\&P Supermarket	2.49
		Shop Rite	2.79
Campari	25.0	Supplier	Price
		Joe's Liquor Store	14.99

is not a valid relation.

Querying Relational Data

Since relations are sets in the mathematical sense, we can use mathematical formalisms to reason over relations.

In this course we will use

- relational algebra and
- relational calculus
to express queries over relational data.
Both are used internally by any decent relational DBMS.
■ Knowledge of both languages will help in understanding SQL and relational database systems in general.

Relational Algebra

In mathematics, an algebra is a system that consists of
■ a set (the carrier) and
■ operations that are closed with respect to the set.
In the case of relational algebra,

- the carrier is the set of all finite relations.

■ We'll get to know its operations in a moment.

Algebraic operators are closed with respect to their set.
■ Every operator takes as input one or more relations (The number of input operands to an operator f is called the arity of f.)

- The output is again a relation.

Operators and relations can be composed into expressions (or queries).

Relational Algebra: Selection

The selection σ_{p} selects a subset of the tuples of a relation, namely those which satisfy the predicate p.

$$
\sigma_{A=1}\left(\begin{array}{c|c}
A & B \\
\hline 1 & 3 \\
1 & 4 \\
2 & 5
\end{array}\right)=\begin{array}{c|c|}
\hline & B \\
1 & 3 \\
1 & 4
\end{array}
$$

■ Selection acts like a filter on its input relation.
■ Selection leaves the schema of the relation unchanged:

$$
\operatorname{sch}\left(\sigma_{p}(R)\right)=\operatorname{sch}(R)
$$

- This best compares to the WHERE clause in SQL.

Relational Algebra: Selection

The predicate p is a Boolean expressions composed of
■ literal constants,

- attribute names, and

■ arithmetic $(+,-, *, \ldots)$, comparison $(=,>, \leq, \ldots)$, and Boolean operators (\wedge, \vee, \neg).
p is evaluated for each tuple in isolation.
\rightarrow Quantifiers (\exists, \forall) or nested relational algebra expressions are not permitted within predicates.

Relational Algebra: Projection

The projection π_{L} eliminates all attributes (columns) of the input relation but those listed in the projection list L.

$$
\pi_{A, C}\left(\begin{array}{c|c|c}
A & B & C \\
\hline 1 & 3 & 2 \\
1 & 3 & 5 \\
2 & 5 & 2
\end{array}\right)=\begin{array}{c|c}
A & C \\
\hline 1 & 2 \\
1 & 5 \\
2 & 2
\end{array}
$$

■ Intuitively: " σ_{p} discards rows; π_{L} discards columns."
■ Database slang: "All attributes not in L are projected away."
■ Projection can also be used to re-order columns.
■ Projection affects the schema: $\operatorname{sch}\left(\pi_{L}(R)\right)=L$. (All attributes listed in L must exist in $\operatorname{sch}(R)$.)

Relational Algebra: Projection

(3)

Projection might change the cardinality (i.e., the number of rows) of a relation.

$$
\pi_{A, B}\left(\begin{array}{c|c|c}
A & B & C \\
1 & 3 & 2 \\
1 & 3 & 5 \\
2 & 5 & 2
\end{array}\right)=\begin{array}{c|c}
A & B \\
\hline 1 & 3 \\
2 & 5
\end{array}
$$

■ Remember that relations are duplicate-free sets!

Relational Algebra: Projection

Often, π_{L} is used also to express additional functionality (needed, e.g., to implement SQL):

- Column renaming:

$$
\pi_{B_{1} \leftarrow A_{i_{1}}, \ldots, B_{k} \leftarrow A_{i k}}(R) .
$$

■ Computations:

$$
\pi_{\text {Name, Value }} \leftarrow \text { InStock } * \text { Price } \text { (Ingredients) }
$$

Alternatively, a separate re-naming operator ϱ_{L} is often seen to express such functionality, e.g.,

$$
\varrho_{B_{1} \leftarrow A_{i_{1}}, \ldots, B_{k} \leftarrow A_{i_{k}}}(R) .
$$

Often, ' \because ' is used instead of ' \leftarrow ' (e.g., $\left.\varrho_{B_{1}: A_{i_{1}}, \ldots, B_{k}: A_{i_{k}}}(R)\right)$.

Relational Algebra: Projection and SQL

In SQL, duplicate rows are not eliminated automatically.
\rightarrow Request duplicate elimination explicitly using keyword DISTINCT.

```
SELECT DISTINCT Alcohol, InStock
    FROM Ingredients
    WHERE Alcohol=0
```

In SQL, projection is expressed using the SELECT clause:

$$
\begin{gathered}
\pi_{B_{1} \leftarrow E_{1}, \ldots, B_{k} \leftarrow E_{k}}(R) \\
\downarrow
\end{gathered}
$$

SELECT DISTINCT E_{1} AS B_{1}, \ldots, E_{k} AS B_{k} FROM R

Relational Algebra: Cartesian Product

The Cartesian product of two relations R and S is computed by concatenating each tuple $r \in R$ with each tuple $s \in S$.

A	B					
1	3					
2	5	\times	C	D		
:---	:---					
7	2					
3	4	$=$	A	B	C	D
:---:	:---:	:---:	:---:			
1	3	7	2			
1	3	3	4			
2	5	7	2			
2	5	3	4			

The Cartesian product contains all columns from both inputs:

$$
\operatorname{sch}(R \times S)=\operatorname{sch}(R)+\operatorname{sch}(S)
$$

$\rightarrow R$ and S must not share any attribute names.
\rightarrow If they do, need to re-name first (using π / ϱ).

Cartesian Product and SQL

We already learned how a Cartesian product can be expressed in SQL:

SELECT * FROM R, S

■ SQL systems will not care about the duplicate column names. (In fact, they allow, e.g., computed values with no column name at all.)
■ Unique column names will be generated by the system if necessary.

Relational Algebra: Set Operations

The two set operators \cup (union) and - (set difference) complete the set of relational algebra operators:

$$
\begin{array}{|l|l|}
\hline A & B \\
\hline 1 & 3 \\
1 & 4 \\
2 & 5
\end{array}-\begin{array}{|c|c|}
\hline & B \\
\hline 1 & 4 \\
3 & 2
\end{array}=\begin{array}{c|c|}
\hline & B \\
1 & 3 \\
2 & 5 \\
\hline
\end{array}
$$

Relational Algebra: Set Operations

Notes:

■ In $R \cup S$ and $R-S, R$ and S must be schema compatible:

$$
\operatorname{sch}(R \cup S)=\operatorname{sch}(R-S)=\operatorname{sch}(R)=\operatorname{sch}(S)
$$

\square For $R \cup S, R$ and S need not be disjoint.
■ For $R-S, S$ need not be a subset of R.
■ In SQL, \cup and - are available as UNION and EXCEPT, e.g.,

```
SELECT Name
    FROM Cocktails
UNION
SELECT Name
    FROM Ingredients
```


Five Basic Algebra Operators

The five basic operations of relational algebra are:

```
1 }\mp@subsup{\sigma}{p}{}\mathrm{ Selection
2 }\mp@subsup{\pi}{L}{}\mathrm{ Projection
3 Cartesian product
4 U Union
5 - Difference
```

■ Any other relational algebra operator (we'll soon see some of them) can be derived from those five.

■ A compact set of operators is a good basis for software (e.g., query optimizers) or database theoreticians to reason over a query or over the language.

Monotonicity

Observe that the first four operators, σ, π, \times, and \cup, are monotonic:
■ New data added to the database might only increase, but never decrease the size of their output. E.g.,

$$
R \subseteq S \Rightarrow \sigma_{p}(R) \subseteq \sigma_{p}(S)
$$

■ For queries composed only of these operators, database insertion never invalidates a correct answer.

■ Difference (-) is the only non-monotonic operator among the basic five.

Monotonicity

For queries with a non-monotonic semantics, e.g.,
■ "Which ingredients cannot be ordered at 'Liquors \& More'?"
■ "Which ingredient has the highest percentage of alcohol?"
■ "Which supplier offers all ingredients in the database?"
the operators $\sigma, \pi, \times, \cup$ are not sufficient to formulate the query. Such queries require set difference.

Formulate the first of these queries in relational algebra.

The Join Operator \bowtie_{p}

The combination $\sigma-\times$ occurs particularly often.
\rightarrow The $\sigma-\times$ pair can be used to combine data from multiple tables, in particular by following foreign key relationships.

Example:

```
\sigma
```

Because of this, we introduce a short notation for the scenario:

$$
R \bowtie_{p} S:=\sigma_{p}(R \times S)
$$

and call operation \bowtie_{p} a join (" R and S are joined").

The Join Operator \bowtie_{p}

With a join operator, the example on the previous slide would read:

Suppliers $\bowtie_{\text {ContactPersons. ContactFor=Suppliers.SuppID }}$ ContactPersons

or (omitting redundant relation names in the predicate):

$$
\text { Suppliers } \bowtie_{\text {ContactFor=SuppID }} \text { ContactPersons }
$$

The basic join operator exactly expands to a $\sigma-\times$ combination as shown on the previous slide!

The Join Operator $\bowtie_{p} /$ Theta Join

The join operator could be used to express any predicate over R and S (though this tends to be not so meaningful in practice).

Ingredients $\bowtie_{\text {Flavor } \leq \text { Email } \wedge \text { Alcohol<10 ContactPersons }}$

The pattern

$$
R \bowtie_{A_{i} \theta B_{j}} S,
$$

where A_{i} is an attribute from R, B_{j} an attribute from S, and $\theta \in\{=, \neq,<, \leq,>, \geq\}$ is often called a θ join (theta join).

The case $\theta \equiv=$ is also called an equi join.

The Natural Join

The most frequent join operation is an (equi) join that follows a foreign key constraint.

It is good practice to use the same attribute name for a primary key and for foreign keys that reference it.
E.g.,

Cocktails			
CockID	CName	Alcohol	GlassID
\vdots	\vdots	\vdots	\vdots

(where GlassID in Cocktails references the GlassID in Glasses).

The Natural Join

To simplify notation for that common case, we introduce the following convention:

If no explicit predicate is given in the join operator, we interpret this as

- an equi join over all pairs of columns that have the same name
and
- the column used for joining is only reported once in the join result.

We call this situation a natural join.

The Natural Join

Based on the example schema on slide 109, the natural join

Cocktails \bowtie Glasses

would perform the (intuitively expected) join over GlassID columns (Cocktails. GlassID $=$ Glasses. GlassID) and have the return schema

Cocktails					
CockID	CName	Alcohol	GlassID	GlassName	Volume
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

The example worked out, because I used different column names for all non-join attributes. Otherwise, \bowtie would have implicitly joined over, e.g., Name, too.

Join as a Filter

Consider the join expression

Suppliers \bowtie ContactPersons

where we assume that ContactPerson has a foreign key SupplD (and no other column pairs with same name exist).

The query will report all suppliers with their contact person.

But:

■ Suppliers where no contact person is stored in ContactPersons will not appear in the result. The join effectively implies a filtering behavior.

Join as a Filter—Semi Join

Sometimes, this filtering behavior is everything we really need from the join operation.
E.g., "All suppliers where we know a contact person."

$$
\pi_{\text {Suppliers.* }}(\text { Suppliers } \bowtie \text { ContactPersons) }
$$

For this situation, database people introduced another explicit notation:

$$
R \ltimes S:=\pi_{\operatorname{sch}(R)}(R \bowtie S) \quad R \ltimes_{p} S:=\pi_{\operatorname{sch}(R)}\left(R \bowtie_{p} S\right)
$$

i.e., compute the join $R \bowtie S$, but keep only colums that come from R.

This operation is also called a semi join.

Quiz

Q What if I want the opposite, all suppliers where we do not know a contact person?

Outer Joins

In other cases, the filtering effect is not desired.
To obtain all suppliers with their contact person without discarding Supplier tuples, use the outer join (here: left outer join):

Suppliers \boxtimes ContactPersons

Assuming the input

Suppliers	
SuppID	SuppName
1	Shop Rite
2	Liquors \& More
3	Joe's Liquor Store

ContactPersons	
SuppID	ContactName
1	Mary Shoppins
3	Joe Drinkmore

what is the result of the above left outer join?

Division

For certain kinds of queries, the division operator is useful.
Given two relations

the division

$$
R \div S
$$

returns those A values a_{i}, such that for every B value b_{j} in S there is a tuple $\left\langle a_{i}, b_{j}\right\rangle$ in R.

Example

The division would be useful to, e.g., ask for suppliers that offer all ingredients:

$$
\text { Suppliers } \bowtie\left(\text { Supplies } \div \pi_{\text {IngrID }}(\text { Ingredients })\right)
$$

Algebraic Laws

Relational algebra operators may have interesting properties, e.g.,

- The join satisfies the associativity condition:

$$
(R \bowtie S) \bowtie T \equiv R \bowtie(S \bowtie T)
$$

(We can thus often omit parentheses in "join chains": $R \bowtie S \bowtie T$.)
■ Join is not commutative, however, unless it is followed by a projection (to re-order columns):

$$
\pi_{L}(R \bowtie S) \equiv \pi_{L}(S \bowtie R)
$$

■ If p only refers to attributes in S, then

$$
\sigma_{p}(R \bowtie S) \equiv R \bowtie \sigma_{p}(S)
$$

(this is also known as selection pushdown).

Algebraic Expressions

Relational Algebra is an expression-oriented language.
\rightarrow Expressions consume and produce relations.
\rightarrow Results of expressions can be input to other expressions.
E.g.,

$$
\left(\left(\pi_{\text {IngrID }}\left(\sigma_{\text {Name='Campari' }} \text { Ingredients }\right)\right) \bowtie \text { Supplies }\right) \bowtie \text { Suppliers }
$$

Another way of looking at this is an operator tree:

Operator Trees

Such operator trees imply an evaluation order.
■ Computation proceeds bottom-up (the evaluation order of sibling branches is not defined).
■ Operator trees are thus a useful tool to describe evaluation strategy and order.

Query Plans

Most relational query optimizers use operator trees internally.
\rightarrow The operator tree leads to a query plan or execution plan.
\rightarrow The execution engine is defined by operator implementations for all of the algebraic operators.
E.g., IBM DB2 execution plan:

Query Optimization

Plan trees can be re-written using algebraic laws:
E.g.,

■ selection pushdown: rewrite expressions to apply selection predicates early:

$$
\sigma_{p}(R \bowtie S) \rightarrow R \bowtie \sigma_{p}(S)
$$

(we saw this algebraic law before).
■ decide join order:

$$
\pi_{L}(R \bowtie S \bowtie T) \rightarrow \pi_{L}(T \bowtie(S \bowtie R))
$$

The rewrite direction is often guided by heuristics and/or cost estimations (\sim Course 'Architecture of Database Systems').

Procedural \leftrightarrow Declarative

The execution order implied by algebraic expressions gives relational algebra a procedural nature.
\rightarrow This is good for query optimization.
\rightarrow It is not so good for query formulation (e.g., by users).

- Want to leave execution strategies up to the database.

For query formulation, we'd much rather like to have a fully declarative way to describe queries.
\rightarrow Specify what you want as a result, not how it can be computed.
\rightarrow "I want all tuples that look like ..." or "I want all tuples that satisfy the predicate ..."

Tuple Relational Calculus: Idea

In mathematics, a common way to describe sets is

$$
\{x \mid p(x)\}
$$

meaning that the set contains all x that satisfy a predicate p.
This inspires the tuple relational calculus (TRC):
In a tuple relational calculus query

$$
\{t \mid F(t)\}
$$

t is a tuple variable, F is a formula that describes how tuples t must look like to qualify for the result.

TRC Formulas

Formulas form the heart of the TRC. The language for formulas is a subset of first-order logic:

An atomic formula is one of the following:
■ $t \in$ RelationName
■ $t \leftarrow\left\langle X_{1}, \ldots, X_{k}\right\rangle$ (tuple constructor)

- r.at s.b (r,s tuple variables; a, b attributes in $r, s ; \theta \in\{=,<, \ldots\})$

■ r.a θ Constant or Constant θ r.a

TRC Formulas

A formula is then recursively defined to be one of the following:

- any atomic formula

■ $\neg F, F_{1} \wedge F_{2}, F_{1} \vee F_{2}$
■ $\exists t: F(t, \ldots)$

- $\forall t: F(t, \ldots)$
where F and F_{i} are formulas and t a tuple variable.
Quantifiers \exists and \forall bind the variable t; t may occur free in F.
A TRC query is an expression of the form

$$
\{t \mid F(t)\}
$$

where F is a formula and t is the only free variable in F.

Examples

All tuples in Ingredients where Alcohol $=0$:

$$
\{t \mid t \in \text { Ingredients } \wedge t . \text { Alcohol }=0\}
$$

Names and prices of all non-alcoholic ingredients:

$$
\{t \mid \exists v: v \in \text { Ingredients } \wedge v . \text { Alcohol }=0 \wedge t \leftarrow\langle v . \text { Name, v.Price }\rangle\}
$$

Name all ingredients that can be ordered at 'Shop Rite':
$\{t \mid \exists u: u \in$ Suppliers $\wedge \exists v: v \in$ Supplies $\wedge \exists w: w \in$ Ingredients $\wedge u$. Name $=$ 'Shop Rite' $\wedge u$. Supp $/ I D=v$. Supp $/ I D$ $\wedge v . I n g r I D=w . I n g r I D \wedge t \leftarrow\langle w . N a m e\rangle\}$

Tuple Relational Calculus \leftrightarrow SQL

Observe how Tuple Relational Calculus and SQL are related:

$$
\begin{aligned}
&\{t \mid \exists u: u \in \text { Suppliers } \wedge \exists v: v \in \text { Supplies } \wedge \exists w: w \in \text { Ingredients } \\
& \wedge u . \text { Name }=\text { 'Shop Rite' } \wedge u . \text { SupplI } D=v . \text { SupplID } \\
&\wedge v . I n g r I D=w . I n g r I D \wedge t \leftarrow\langle w . N a m e\rangle\}
\end{aligned}
$$

In SQL:
SELECT w.Name FROM Suppliers AS u, Supplies AS v, Ingredients AS w WHERE u.Name='Shop Rite' AND u.SupplID=v.SupplID

AND v.IngrID = w. IngrID

Expressive Power

Idea:

■ Use tuple relational calculus (\sim SQL) as a declarative front-end language for relational databases.

Questions:

■ Can all relational algebra expressions also expressed using TRC?
■ Can all TRC queries expressed using relational algebra?
(That is, can all TRC queries be answered with an execution engine that implements the algebraic operators?)

Answer?
 \square No!

Expressive Power

Consider the TRC query

$$
\{t \mid \neg(t \in \text { Ingredients })\}
$$

(return all tuples that are not in the Ingredients table).

■ The set of tuples described by this query is infinite. ${ }^{8}$
■ Relational algebra expressions operate over (and produce) only relations of finite size.
\rightarrow The above TRC query is not expressible in relational algebra.
${ }^{8}$ Or bound only by the (very large) domains for the attributes in Ingredients.

Safe Tuple Relational Calculus

The query on the previous slide was an example of an unsafe TRC query.
In practice, queries with an infinite result are rarely meaningful.

Thus:

■ Restrict TRC to allow only queries with a finite result. (We will refer to the set of allowed queries as the safe TRC.)

"Trick:"

■ Define safe TRC based on syntactic restrictions on the formula language.
\rightarrow Why "syntactic"?

Safe Tuple Relational Calculus

A formula F in the tuple relational calculus is called safe iff
1 it contains no universal quantifiers (\forall),
2 in each $F_{1} \vee F_{2}, F_{1}$ and F_{2} have only one free variable and this is the same variable in F_{1} and F_{2},

3 in all maximal conjunctive sub-formulae $F_{1} \wedge F_{2} \wedge \cdots \wedge F_{k}$, a variable t may be used in a formula F_{i} only after it has been limited ("bound") in a formula $F_{j}, j<i$.
A formula F_{j} limits t iff

- $F_{j} \equiv t \in R$ or

■ $F_{j} \equiv t \leftarrow\left[X_{1}, \ldots, X_{k}\right]$

- t appears free in F_{j} and F_{j} itself is a safe TRC formula.

All free variables of a maximal conjunctive sub-formula must be limited.

4 negation only occurs in a conjunction as in 3.

Safe TRC \leftrightarrow SQL

SQL is also "safe" in that sense.
\rightarrow All tuple variables must be bound ("limited") in the FROM part.

SQL is not purely based on safe TRC, but includes a combination of

- Safe TRC,

■ Relational Algebra, (Which example did we already see?)

- Additional constructs, such as aggregation.

Equivalence of Relational Algebra and Safe TRC

Theorem

Relational algebra and safe tuple relational calculus are equivalent.

This equivalence
■ guarantees expressiveness, e.g., for SQL,
■ yet allows query compilation into relational algebra (for query optimization and execution).

The theorem can be proven in a constructive way:
■ Give translation rules that compile any safe TRC query into relational algebra and vice versa.
\rightarrow The TRC \rightarrow algebra direction already instructs us how to build a query compiler.

Relational Algebra \rightarrow Safe TRC

Goal: A function $\mathbb{T R C}$ that translates any algebra expression into a Safe TRC formula.

The interesting part is to derive the formula F to construct $\{t \mid F(t)\}$.

Thus:

$■$ Find $\mathbb{T}(v$, Exp $)$. Given the name of a variable v and an algebraic (sub)expression Exp, $\mathbb{T}(v, E x p)$ constructs a formula, such that

$$
\mathbb{T} \mathbb{R} \mathbb{C}(E x p):=\{t \mid \mathbb{T}(t, E x p)\}
$$

is the TRC equivalent for Exp and $\mathbb{T}(t, E x p)$ is safe.

Relational Algebra \rightarrow Safe TRC

Example:

$$
\mathbb{T}(v, R):=v \in R .
$$

Then,

$$
\mathbb{T} \mathbb{R} \mathbb{C}(R):=\{t \mid \mathbb{T}(t, R)\}=\{t \mid t \in R\}
$$

Strategy: Syntax-Driven Translation:

$$
\begin{aligned}
\mathbb{T}(v, R) & :=v \in R \quad \text { (see above) } \\
\mathbb{T}\left(v, \sigma_{p}(E x p)\right) & :=? \\
\mathbb{T}\left(v, \pi_{L}(E x p)\right) & :=? \\
\mathbb{T}\left(v, E_{x p_{1}} \times \operatorname{Exp}_{2}\right) & :=? \\
\mathbb{T}\left(v, E_{x p_{1}} \cup \operatorname{Exp}_{2}\right) & :=? \\
\mathbb{T}\left(v, E_{x p_{1}}-E_{x p_{2}}\right) & :=?
\end{aligned}
$$

(Next: Find a translation for each of the five basic algebra operators.)

$\sigma_{p}($ Exp $) \rightarrow$ Safe TRC

Algebra selection operator σ_{p} :

$$
\mathbb{T}\left(v, \sigma_{p}(E x p)\right):=\mathbb{T}(v, E x p) \wedge p(v),
$$

where $p(v)$ is the predicate p in σ_{p} and all attribute names in p are qualified using the variable name v.
\rightarrow The resulting formula is safe if the result of the recursive construction $\mathbb{T}(v$, Exp $)$ is safe.

Remaining rules for $\mathbb{T}(v$, Exp $) \rightarrow$ exercises.

Safe TRC \rightarrow Relational Algebra

Goal: A function Alg that translates any safe TRC query into a valid algebra expression.

Safe TRC cannot simply be translated bottom-up, because some of its sub-formulas might be un-safe if considered in isolation.

Example: $\{t \mid t \in R \wedge t \notin S\}$ is legal, but the sub-formula $t \notin S$ would violate rule 3 for safe TRC on slide 132 (and $\{t \mid \neg(t \in S)\}$ is not expressible in relational algebra).

Safe TRC \rightarrow Relational Algebra

Thus:

Carry context information through the translation process with help of an auxiliary function \mathbb{A} :

$$
\mathbb{A} \lg (\{t \mid F(t)\}):=\pi_{t . *}(\mathbb{A}(\{ \}, F \wedge \text { true })) .
$$

Idea:

■ As input, \mathbb{A} receives a partial algebra plan (initialized with $\}$) and a TRC formula.
■ A "consumes" a conjunctive formula $F_{1} \wedge \cdots \wedge F_{k}$ piece-by-piece.

- The partial algebra plan is used to provide context and accumulate the overall compilation result.
■ We use $\} \times E:=E$ and $F \equiv F \wedge$ true to simplify compilation rules.

Safe TRC \rightarrow Relational Algebra

Let us look at simple formulas first:

$$
\begin{align*}
\mathbb{A}(E, t \in R \wedge F) & :=\mathbb{A}\left(E^{\pi_{t . A_{1}: A_{1}, \ldots, t . A_{k}: A_{k}}, F}{ }_{R}^{\times}, F\right. \tag{1}\\
\mathbb{A}\left(E, t \leftarrow\left[X_{1}, \ldots, X_{k}\right] \wedge F\right) & :=\mathbb{A}\binom{\pi_{\operatorname{sch}(E), t . A_{1}: X_{1}, \ldots, t . A_{k}: X_{k}}}{E} \tag{2}\\
\mathbb{A}(E, X \theta Y \wedge F) & :=\mathbb{A}\left(\sigma_{X \theta Y} E, F\right) \tag{3}\\
\mathbb{A}(E, \text { true }) & :=\mathbb{E} \tag{4}
\end{align*}
$$

Safe TRC \rightarrow Relational Algebra

* Translation of

$$
\{r \mid r \in R \wedge s \in S \wedge r . A=s . A \wedge s . B=42\} ?
$$

(The above TRC expression is not quite correct. Why?

Safe TRC \rightarrow Relational Algebra — Detour

Looks familiar?

This is (almost) exactly how your database system compiles SQL!

$$
\begin{gathered}
\text { SELECT } p . * \\
\text { FROM Professors AS } p \text {, Courses AS } c \\
\text { WHERE } p . I D=c . h e l d B y \\
\text { AND } c . c o u r s e I D=42 \\
\downarrow \\
\{p \mid p \in \text { Professors } \wedge c \in \text { Courses } \\
\wedge p . I D=c . h e l d B y \wedge C . c o u r s e I D=42\} \\
\downarrow \\
\pi_{p . *}\left(\sigma_{p . c o u r s e I D=42}\left(\text { Professors } \bowtie_{p . I D=c . h e l d B y} \text { Courses }\right)\right)
\end{gathered}
$$

Safe TRC \rightarrow Relational Algebra

Time to complete our rule set. . .

$$
\begin{align*}
& \mathbb{A}(E,(\exists v: G) \wedge F):=\mathbb{A}\left(\begin{array}{c}
\pi_{\text {sch }(E)} \\
\mathbb{A}(E, G \wedge \text { true })
\end{array}, F\right) \tag{5}\\
& \mathbb{A}\left(E,\left(G_{1} \vee G_{2}\right) \wedge F\right):=\mathbb{A}\left(\mathbb{A}\left(E, G_{1} \wedge \text { true }\right) \mathbb{A}\left(E, G_{2} \wedge \text { true }\right), F\right) \tag{6}\\
& \mathbb{A}(E, \neg G \wedge F):=\mathbb{A}\left(\begin{array}{c}
E^{-} \\
\\
\\
\\
\\
\mathbb{A}(E, G \wedge \text { sch }(E) \\
\left.\left.\right|_{\text {true }}\right)
\end{array}\right) \tag{7}
\end{align*}
$$

Safe TRC \rightarrow Relational Algebra

Notes:

■ In Rule (5), the \exists quantifier introduces a new variable, which appears free in G. After compiling G, we "project away" the additional column(s).
■ In Rule (6), both parts of the \cup must be schema-compatible, because (by rule 2 for safe TRC on slide 132) G_{1} and G_{2} must have the same free variable.

- Observe, in Rule (7), how we can make use of the difference operator, because we made sure that all free variables in G were bound previously (and are thus part of E).

Safe TRC \rightarrow Relational Algebra (Example)

(2) Translation of

$$
\{r \mid r \in R \wedge(\exists s: s \in S \wedge r . A=s . A \wedge s . B=42)\} ?
$$

Limitations of Relational Algebra / Safe TRC

Suppose a database contains a Flights relation

Flights		
From	To	FlightNo
ZRH	DRS	OL 277
DRS	MUC	LH 2127
\vdots	\vdots	\vdots

where a tuple $\langle f, t, n\rangle$ indicates that there is a flight from f to n with flight number n.

The algebra expression

$$
\pi_{T_{0}}\left(\pi_{\text {From↔To }}\left(\sigma_{\text {From='ZRH' }}(\text { Flights })\right) \bowtie \text { Flights }\right)
$$

then returns airport codes for all destinations that can be reached with one stop from Zurich.

Limitations of Relational Algebra / Safe TRC

More generally, we can use an n-fold self join to find destinations reachable with n stops.
\rightarrow We can write down that self join for every known value of n.
\rightarrow But it is impossible to express the transitive closure in relational algebra.
(I.e., we cannot write a query that returns reachable destinations with a trip of any length.)

This implies that relational algebra is not computationally complete.
\rightarrow This might seem unfortunate. But it is a consequence of the desirable guarantee that query evaluation always terminates in relational algebra.

Expressiveness of SQL

SQL is slightly more powerful than relational algebra (三 Safe TRC), e.g.,

■ aggregation (e.g., the SQL COUNT operation)
■ (very limited) support for recursion
Reachability queries as shown before can actually be expressed in recent versions of SQL.

■ explicit support for special use cases (e.g., windowing)
These extensions have been carefully designed to keep the termination guarantees, however.

Wrap-Up

Relations:

■ finite sets of tuples

Relational Algebra:

■ expression-based query language
\rightarrow operators $\sigma_{p}, \pi_{L}, \times, \cup,-, \bowtie_{p}, \ldots$
\rightarrow used internally by DBMSs for optimization and evaluation

(Safe) Tuple Relational Calculus:

■ declarative query language

```
\(\rightarrow\{t \mid F(t)\}\)
\(\rightarrow\) TRC inspired the design of the SQL language
```


Expressiveness:

■ relational algebra $=$ safe $\mathrm{TRC} \subseteq \mathrm{SQL}$

