
Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund

jens.teubner@cs.tu-dortmund.de

Summer 2014

c© Jens Teubner · Information Systems · Summer 2014 1



Part II

Overview of Database Systems

c© Jens Teubner · Information Systems · Summer 2014 11



Why a Database System?

Why not simply use OS files to keep the data?

Suppose you own a cocktail bar. You want to

keep inventory of your cocktail ingredients:

Ingredients

Name Alcohol InStock Price

Orange Juice 0.0 12 2.99

Campari 25.0 5 12.95

Bacardi 37.5 3 16.98

One way of storing these data could be:

Orange Juice:0.0:12:2.99

Campari:25.0:5:12.95

Bacardi:37.5:3:16.98

c© Jens Teubner · Information Systems · Summer 2014 12



Why a Database System?

� What do you think of this approach?

(Think of problems that might occur. Judge the effort to solve them.)

data representation and access

→ special characters, number formats, updates to data, . . .

semantic integrity

→ valid number ranges, uniqueness

protection, privacy

→ unauthorized modifications, field visibility

multi-user access

→ synchronization, integrity

scalability, fault tolerance

→ What if your data grows? Or when your system crashes?

c© Jens Teubner · Information Systems · Summer 2014 13



Databases Provide Abstractions

Databases provide abstractions to avoid many of these problems:

storage2

Database

Management System

User 1 User 2 User 3

2Some databases work on top of operating system files, others access raw disk

partitions or network-attached storage directly.
c© Jens Teubner · Information Systems · Summer 2014 14



Abstraction 1: Data Model

Rather than exposing bits and bytes of the underlying storage,

databases present a high-level data model to the outside.

By far the most popular data model today is the relational model:

Ingredients

Name Alcohol InStock Price

Orange Juice 0.0 12 2.99

Campari 25.0 5 12.95

Bacardi 37.5 3 16.98

relation
or table

schema

record, row,
or tuple

field, column,
or attribute

Other data models: hierarchical model, object-oriented model,

object-relational model, XML.

c© Jens Teubner · Information Systems · Summer 2014 15



Schema ↔ Instance

Database Schema:

Formal definition of the structure of the database contents.

Defined once (when database is created).

Restricts the possible contents that can be put into the database.

; In a programming language, this corresponds to the declaration of a

variable:

unsigned int i;

Database State (Instance of the Schema):

Contains the actual data, structured according to the schema.

Changes often

; Current value of a variable in a programming language:

i = i + 42;

c© Jens Teubner · Information Systems · Summer 2014 16



Physical vs. Conceptual Schema

What we just saw is only the user’s understanding of the data

representation, the conceptual schema (also: logical schema).

The physical representation is at the DBMS’s discretion.

storage

physical schema

conceptual schema

DBMS

The physical schema may use different file organizations or access

mechanisms (indexes) to improve performance.

c© Jens Teubner · Information Systems · Summer 2014 17



External Schemata

The external schema provides views on top of the conceptual schema.

Tailored to different users or applications

Alternative data models (e.g., XML over relational data)

storage

physical schema

conceptual schema

ext. schema 1 ext. schema 2 ext. schema 3

user 1 user 2 user 3 user 4

DBMS

c© Jens Teubner · Information Systems · Summer 2014 18



Data Independence

The separation of views on the same data allows for data independence.

Physical data independence:

Change physical storage layout or create indexes.

→ Changes invisible to conceptual schema (and external

schema)—only performance might have improved.

Logical data independence:

Change the logical representation of the data, but leave external

schema intact.

→ Existing applications still work as before.

c© Jens Teubner · Information Systems · Summer 2014 19



Example: Logical Data Independence

As a bar owner, you want to better track where your cocktail ingredients

are, so you create a table Availabilities:

Availabilities

Name InStock Location

Orange Juice 3 refrigerator
Orange Juice 9 warehouse
Campari 2 refrigerator

The InStock field can now be removed from the Ingredients table and

computed on-demand instead. Applications will not notice the change.

ALTER TABLE IngredientsConceptual DROP COLUMN InStock;

CREATE VIEW IngredientsExternal AS
SELECT i.Name, i.Alcohol, SUM (a.InStock) AS InStock, i.Price
FROM IngredientsConceptual AS i, Availabilities AS a
WHERE i.Name = a.Name
GROUP BY i.Name, i.Alcohol, i.Price

c© Jens Teubner · Information Systems · Summer 2014 20



Abstraction 2: Query Language

Databases offer declarative query languages.

Specify which data should be retrieved, rather than how they

should be retrieved.

Example: Names and prices of non-alcoholic drinks, ordered by Name,

expressed in SQL (Structured Query Language):

SELECT Name, Price

FROM Ingredients

WHERE Alcohol = 0

ORDER BY Name

→ Compare this to a program that you’d have to write if you used OS

files for storage.

→ Physical data independence would not allow use of indexes anyway.

c© Jens Teubner · Information Systems · Summer 2014 21



Query Optimization

Declarative languages need powerful optimizers.

Declarative languages allow powerful optimizers.

Today’s query optimizers are really powerful.

This releases you from worrying how you write your query “most

efficiently,” but focus on the application problem instead.

Additional benefit:

Once written, your query/application will automatically benefit from

improvements in the physical schema, the database software, or the

underlying hardware.

c© Jens Teubner · Information Systems · Summer 2014 22



Abstraction 3: Access Control, Data Integrity

Databases help to keep the integrity of stored data.

Sophisticated access control mechanisms support very fine-granular

restrictions to read or modify data.

Integrity constraints can be defined along with the conceptual

schema and ensure plausibility of the stored data.

ALTER TABLE Availabilities

ADD FOREIGN KEY (Name)

REFERENCES Ingredients (Name)

Consistency: The database system will check integrity constraints

and ensures that every user sees a consistent database state.

c© Jens Teubner · Information Systems · Summer 2014 23



Abstraction 4: Multi-User Support

Databases shield the programmer from many multi-user issues.

Give each user the illusion that he/she is the only user at any time.

Perform locking, and conflict detection automatically.

At the same time, the database helps handling problems or conflicts.

Atomicity: a database transaction (i.e., a sequence of SQL

commands) is executed atomically (“all or nothing” principle).

Isolation: transactions cannot see the effects of co-running

transactions; every user has the impression he/she is alone on the

system.

c© Jens Teubner · Information Systems · Summer 2014 24



Abstraction 5: Tolerance to Failures

Databases ensure durability of data modifications.

A successful transaction will never get lost, whatever failure the

system might encounter, including

software crashes on client or server side (also: OS crash);

hardware failures (hard disk crash);

catastrophic failures (fire, water, etc.).

The database will apply necessary measures to guarantee durability:

redundant storage (write-ahead logging),

backup/recovery mechanisms.

Durability: The effect of a successful transaction remain persistent

and may not be undone for system reasons.

c© Jens Teubner · Information Systems · Summer 2014 25



Related: Information Retrieval (Search)
I always use Google to find

the information I need.

Search engines are related, but serve a different purpose.

database search engine

structured data (e.g., relational) unstructured data (“documents”)

tailor-made query language natural language interface

expressive query language limited expressiveness

exact-match queries ranking-based queries (top-n)

deterministic result probabilistic result

Application demands increasingly fall between those two extremes.

→ Content-aware search (e.g., email search)

→ Full-text indexes in databases

→ Semi-structured data (e.g., XML)

c© Jens Teubner · Information Systems · Summer 2014 26



Related: Key-Value Stores

Key-value stores are not databases in the sense discussed here.

E.g., Cassandra, Dynamo, Memcached

Designed for massive scalability in cloud environments

CAP Theorem: Cannot have such scalability and strong

transaction guarantees.

Much simpler data/query model: key/value lookups only

Think of them as a back-end on top of which database

functionality could be built.

c© Jens Teubner · Information Systems · Summer 2014 27



DBMS in the Software Stack

Databases are typically used in a three-tier architecture.

database

application
logic

user
interface

DBMS

Application Server Application Server

Client Client Client Client Client

A database system forms the heart of virtually any business application!

c© Jens Teubner · Information Systems · Summer 2014 28


	Overview of Database Systems
	Why a Database System?
	Databases Provide Abstractions
	Abstraction 1: Data Model
	Abstraction 2: Query Language
	Abstraction 3: Access Control, Data Integrity
	Abstraction 4: Multi-User Support
	Abstraction 5: Tolerance to Failures

	DBMS in the Software Stack


