Information Systems

(Informationssysteme)

Jens Teubner, TU Dortmund
jens.teubner@cs.tu-dortmund.de

Summer 2014

© Jens Teubner - Information Systems - Summer 2014

Part I

Overview of Database Systems

© Jens Teubner - Information Systems - Summer 2014

Why a Database System?

Why not simply use OS files to keep the data?

Suppose you own a cocktail bar. You want to
keep inventory of your cocktail ingredients:

Ingredients
Orange Juice 12 2.99
Campari 25.0 5 12.95
Bacardi 37.5 3 16.98

One way of storing these data could be:

Orange Juice:0.0:12:2.99
Campari:25.0:5:12.95
Bacardi:37.5:3:16.98

© Jens Teubner - Information Systems - Summer 2014

Why a Database System?

@ What do you think of this approach?
(Think of problems that might occur. Judge the effort to solve them.)

© Jens Teubner - Information Systems - Summer 2014

Databases Provide Abstractions

Databases provide abstractions to avoid many of these problems:

’Userl‘ ’UserQ‘ ’User3‘

!

Database
Management System

[

—
storage?

2Some databases work on top of operating system files, others access raw disk
partitions or network-attached storage directly.

© Jens Teubner - Information Systems - Summer 2014 14

Abstraction 1: Data Model

m Rather than exposing bits and bytes of the underlying storage,
databases present a high-level data model to the outside.

m By far the most popular data model today is the relational model:

h
Kilconol schem

relation Orange Juice
or table
Campari 25.0 5 12 95 }record row,
or tuple
Bacardi 37.5 3 16.98

field, column,
or attribute

m Other data models: hierarchical model, object-oriented model,
object-relational model, XML.

© Jens Teubner - Information Systems - Summer 2014

Schema < Instance

Database Schema:
m Formal definition of the structure of the database contents.
m Defined once (when database is created).
m Restricts the possible contents that can be put into the database.

~ In a programming language, this corresponds to the declaration of a
variable:

unsigned int i; J

Database State (Instance of the Schema):
m Contains the actual data, structured according to the schema.
m Changes often

~> Current value of a variable in a programming language:

i=1i+ 42; J

© Jens Teubner - Information Systems - Summer 2014 16

Physical vs. Conceptual Schema

m What we just saw is only the user’s understanding of the data
representation, the conceptual schema (also: logical schema).

m The physical representation is at the DBMS's discretion.

~ I~
’ conceptual schema ‘
J
’ physical schema ‘
7 DBMS
1

—

m The physical schema may use different file organizations or access
mechanisms (indexes) to improve performance.

© Jens Teubner - Information Systems - Summer 2014 17

External Schemata

The external schema provides views on top of the conceptual schema.
m Tailored to different users or applications

m Alternative data models (e.g., XML over relational data)

’userQ‘ ’user3‘ ’user4‘
T

I 4 \\l \(/‘
’ext. schema 1 ‘ ’ext. schema 2‘ ’ext. schema 3‘
{
’ conceptual schema ‘
7
’ physical schema ‘ DBMS

T
1
e

© Jens Teubner - Information Systems - Summer 2014

Data Independence

The separation of views on the same data allows for data independence
Physical data independence:

m Change physical storage layout or create indexes.

— Changes invisible to conceptual schema (and external
schema)—only performance might have improved.

Logical data independence:

m Change the logical representation of the data, but leave external
schema intact.

— Existing applications still work as before.

© Jens Teubner - Information Systems - Summer 2014

Example: Logical Data Independence

As a bar owner, you want to better track where your cocktail ingredients
are, so you create a table Availabilities:

TaStock
Orange Juice 3 refrigerator
Orange Juice 9 warehouse
Campari 2 refrigerator

The InStock field can now be removed from the Ingredients table and
computed on-demand instead. Applications will not notice the change.

ALTER TABLE IngredientsConceptual DROP COLUMN InStock;

CREATE VIEW IngredientsExternal AS
SELECT i.Name, i.Alcohol, SUM (a.InStock) AS InStock, i.Price
FROM IngredientsConceptual AS i, Availabilities AS a
WHERE i.Name =a.Name
GROUP BY i.Name, i.Alcohol, i.Price

© Jens Teubner - Information Systems - Summer 2014 20

Abstraction 2: Query Language

Databases offer declarative query languages.

m Specify which data should be retrieved, rather than how they
should be retrieved.

Example: Names and prices of non-alcoholic drinks, ordered by Name,
expressed in SQL (Structured Query Language):

SELECT Name, Price
FROM Ingredients

WHERE Alcohol =0
ORDER BY Name

— Compare this to a program that you'd have to write if you used OS
files for storage.

— Physical data independence would not allow use of indexes anyway.

© Jens Teubner - Information Systems - Summer 2014 21

Query Optimization

m Declarative languages need powerful optimizers.

m Declarative languages allow powerful optimizers.

Today's query optimizers are really powerful.

m This releases you from worrying how you write your query “most
efficiently,” but focus on the application problem instead.

Additional benefit:

m Once written, your query/application will automatically benefit from
improvements in the physical schema, the database software, or the
underlying hardware.

© Jens Teubner - Information Systems - Summer 2014

Abstraction 3: Access Control, Data Integrity

Databases help to keep the integrity of stored data.

m Sophisticated access control mechanisms support very fine-granular
restrictions to read or modify data.

m Integrity constraints can be defined along with the conceptual
schema and ensure plausibility of the stored data.

ALTER TABLE Availabilities
ADD FOREIGN KEY (Name)
REFERENCES Ingredients (Name)

m Consistency: The database system will check integrity constraints
and ensures that every user sees a consistent database state.

© Jens Teubner - Information Systems - Summer 2014 23

Abstraction 4: Multi-User Support

Databases shield the programmer from many multi-user issues.

m Give each user the illusion that he/she is the only user at any time.
m Perform locking, and conflict detection automatically.

At the same time, the database helps handling problems or conflicts.

m Atomicity: a database transaction (i.e., a sequence of SQL
commands) is executed atomically (“all or nothing” principle).

m Isolation: transactions cannot see the effects of co-running
transactions; every user has the impression he/she is alone on the
system.

© Jens Teubner - Information Systems - Summer 2014 24

Abstraction 5: Tolerance to Failures

Databases ensure durability of data modifications.

m A successful transaction will never get lost, whatever failure the
system might encounter, including

m software crashes on client or server side (also: OS crash);
m hardware failures (hard disk crash);
m catastrophic failures (fire, water, etc.).

m The database will apply necessary measures to guarantee durability:

m redundant storage (write-ahead logging),
m backup/recovery mechanisms.

m Durability: The effect of a successful transaction remain persistent
and may not be undone for system reasons.

© Jens Teubner - Information Systems - Summer 2014 25

Related: Information Retrieval (Searchy

| always use Google to find
the information | need.

Search engines are related, but serve a different purpose.

database search engine
structured data (e.g., relational) unstructured data (“documents”)
tailor-made query language natural language interface
expressive query language limited expressiveness
exact-match queries ranking-based queries (top-n)
deterministic result probabilistic result

Application demands increasingly fall between those two extremes.
— Content-aware search (e.g., email search)
— Full-text indexes in databases
— Semi-structured data (e.g., XML)

© Jens Teubner - Information Systems - Summer 2014 26

Related: Key-Value Stores

Key-value stores are not databases in the sense discussed here.

m £.g., Cassandra, Dynamo, Memcached

m Designed for massive scalability in cloud environments

m CAP Theorem: Cannot have such scalability and strong
transaction guarantees.

m Much simpler data/query model: key/value lookups only

m Think of them as a back-end on top of which database
functionality could be built.

© Jens Teubner - Information Systems - Summer 2014

DBMS in the Software Stack

Databases are typically used in a three-tier architecture.

| C|ient\ | c]|f|ent/ cnent\cne\zt //Client e
’Appllcanon Server ’Appllcatlon Server ap[)l!;?z'on

database

A database system forms the heart of virtually any business application!

© Jens Teubner - Information Systems - Summer 2014

	Overview of Database Systems
	Why a Database System?
	Databases Provide Abstractions
	Abstraction 1: Data Model
	Abstraction 2: Query Language
	Abstraction 3: Access Control, Data Integrity
	Abstraction 4: Multi-User Support
	Abstraction 5: Tolerance to Failures

	DBMS in the Software Stack

