Information Systems (Informationssysteme)

Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de

Summer 2014

Part VII

Schema Normalization

Motivation

In the database design process, we tried to produce **good relational schemata** (*e.g.*, by merging relations, slide 76).

 \rightarrow But what is "good," after all?

Let us consider an example:

Students			
StudID	Name	Address	<u>SeminarTopic</u>
08-15	John Doe	74 Main St	Databases
08-15	John Doe	74 Main St	Systems Design
47-11	Mary Jane	8 Summer St	Data Mining
12-34	Dave Kent	19 Church St	Databases
12-34	Dave Kent	19 Church St	Statistics
12-34	Dave Kent	19 Church St	Multimedia

Update Anomalies

Obviously, this is **not** an example of a "good" relational schema.

→ **Redundant** information may lead to problems during **updates**:

Update Anomaly

If a student changes his address, several rows have to be updated.

Insert Anomaly

What if a student is not enrolled to any seminar?

- → Null value in column SeminarTopic?
 (→ may be problematic since SeminarTopic is part of a key)
- → To enroll a student to a course: overwrite null value (if student is not enrolled to any course) or create new tuple (otherwise)?

Delete Anomaly

Conversely, to un-register a student from a course, we might now either have to create a null value or delete an entire row.

Decomposed Schema

Those anomalies can be avoided by **decomposing** the table:

Students		
StudID	Name	Address
08-15	John Doe	74 Main St
47-11	Mary Jane	8 Summer St
12-34	Dave Kent	19 Church St

Students			
<u>StudID</u>	<u>SeminarTopic</u>		
08-15	Databases		
08-15	Systems Design		
47-11	Data Mining		
12-34	Databases		
12-34	Statistics		
12-34	Multimedia		

No redundancy exists in this representation any more.

Anomalies: Another Example

The previous example might seem silly. But what about this one:

Real-world constraints:

- Each student may take only one exam with any particular professor.
- For any course, all exams are done by the same professor.

Anomalies: Another Example

Ternary relationship set \rightarrow ternary relation:

TakesExam			
Student	<u>Professor</u>	Course	
John Doe	Prof. Smart	Information Systems	
Dave Kent	Prof. Smart	Information Systems	
John Doe	Prof. Clever	Computer Architecture	
Mary Jane	Prof. Bright	Software Engineering	
John Doe	Prof. Bright	Software Engineering	
Dave Kent	Prof. Bright	Software Engineering	

- The association $Course \rightarrow Professor$ occurs multiple times.
- Decomposition without that redundancy?

Functional Dependencies

Both examples contained instance of functional dependencies, e.g.,

 $Course \rightarrow Professor$.

We say that

"Course (functionally) determines Professor."

meaning that when two tuples t_1 and t_2 agree on their *Course* values, they **must** also contain the same *Professor* value.

Notation

For this chapter, we'll simplify our **notation** a bit.

- We use single capital letters A, B, C, ... for attribute names.
- We use a short-hand notation for **sets of attributes**:

$$ABC \stackrel{\text{def}}{=} \{A, B, C\}$$
.

A functional dependency (FD) $A_1 ... A_n \rightarrow B_1 ... B_m$ on a relation schema sch(R) describes a **constraint** that, for every instance R:

$$t.A_1 = s.A_1 \wedge \dots \wedge t.A_n = s.A_n \Rightarrow t.B_1 = s.B_1 \wedge \dots \wedge t.B_m = s.B_m \ .$$

 \rightarrow A functional dependency is a constraint over **one** relation. $A_1, \ldots, A_n, B_1, \ldots, B_m$ must all be in sch(R).

Functional Dependencies ↔ Keys

Functional dependencies are a generalization of **key constraints**:

$$A_1, \ldots, A_n$$
 is a key of relation $R(A_1, \ldots, A_n, B_1, \ldots, B_m)$. \Leftrightarrow $A_1 \ldots A_n \to B_1 \ldots B_m$ holds.

Conversely, functional dependencies can be explained with keys.

$$A_1 \dots A_n \to B_1 \dots B_m$$
 holds for R . \Leftrightarrow A_1, \dots, A_n is a key of $\pi_{A_1, \dots, A_n, B_1, \dots B_m}(R)$.

- → Functional dependencies are "partial keys".
- → A goal of this chapter is to turn FDs into **real keys**, because key constraints can easily be enforced by a DBMS.

Functional Dependencies

Sunctional dependencies in Students?

Students			
StudID	Name	Address	<u>SeminarTopic</u>
08-15	John Doe	74 Main St	Databases
08-15	John Doe	74 Main St	Systems Design
47-11	Mary Jane	8 Summer St	Data Mining
12-34	Dave Kent	19 Church St	Databases
12-34	Dave Kent	19 Church St	Statistics
12-34	Dave Kent	19 Church St	Multimedia

Functional dependencies in the TakesExam example?

Functional Dependencies, Entailment

A functional dependency with m attributes on the right-hand side

$$A_1 \dots A_n \to B_1 \dots B_m$$

is **equivalent** to the *m* functional dependencies

$$\begin{array}{cccc} A_1 \dots A_n & \to & B_1 \\ & \vdots & & \vdots \\ A_1 \dots A_n & \to & B_m \end{array}$$

Often, functional dependencies **imply** one another.

- \rightarrow We say that a set of FDs \mathcal{F} **entails** another FD f if the FDs in \mathcal{F} guarantee that f holds as well.
- \rightarrow If a set of FDs \mathcal{F}_1 entails all FDs in the set \mathcal{F}_2 , we say that \mathcal{F}_1 is a **cover** of \mathcal{F}_2 ; \mathcal{F}_1 **covers** (all FDs in) \mathcal{F}_2 .

Reasoning over Functional Dependencies

Intuitively, we want to (re-)write relational schemas such that

- redundancy is minimized (and thus also update anomalies) and
- the system can still guarantee the **same integrity constraints**.

Functional dependencies allow us to **reason** over the latter.

E.g.,

■ Given two schemas S_1 and S_2 and their associated sets of FDs \mathcal{F}_1 and \mathcal{F}_2 , are \mathcal{F}_1 and \mathcal{F}_2 "equivalent"?

Equivalence of two sets of functional dependencies:

■ We say that two sets of FDs \mathcal{F}_1 and \mathcal{F}_2 are **equivalent** $(\mathcal{F}_1 \equiv \mathcal{F}_2)$ when \mathcal{F}_1 entails all FDs in \mathcal{F}_2 and vice versa.

Closure of a Set of Functional Dependencies

Given a set of functional dependencies \mathcal{F} , the set of all functional dependencies entailed by \mathcal{F} is called the **closure of** \mathcal{F} , denoted \mathcal{F}^+ :¹¹

$$\mathcal{F}^+ := \big\{\, lpha o eta \mid lpha o eta \,\, ext{entailed by } \mathcal{F} \, \big\}$$
 .

Closures can be used to express equivalence of sets of FDs:

$$\mathcal{F}_1 \equiv \mathcal{F}_2 \iff \mathcal{F}_1^+ = \mathcal{F}_2^+$$
 .

If there is a way to **compute** \mathcal{F}^+ for a given \mathcal{F} , we can test

- lacksquare whether a given FD lpha o eta is entailed by \mathcal{F} $(\sim lpha o eta \overset{?}{\in} \mathcal{F}^+)$
- whether two sets of FDs, \mathcal{F}_1 and \mathcal{F}_2 , are equivalent.

¹¹Let α , β , ... denote sets of attributes.

[©] Jens Teubner · Information Systems · Summer 2014

Armstrong Axioms

 \mathcal{F}^+ can be computed from \mathcal{F} by repeatedly applying the so-called **Armstrong axioms** to the FDs in \mathcal{F} :

■ **Reflexivity:** ("trivial functional dependencies")

If
$$\beta \subseteq \alpha$$
 then $\alpha \to \beta$.

Augmentation:

If
$$\alpha \to \beta$$
 then $\alpha \gamma \to \beta \gamma$.

■ Transitivity:

If
$$\alpha \to \beta$$
 and $\beta \to \gamma$ then $\alpha \to \gamma$.

It can be shown that the three Amstrong axioms are **sound** and **complete**: exactly the FDs in \mathcal{F}^+ can be generated from those in \mathcal{F} .

Testing Entailment / Attribute Closure

Building the full \mathcal{F}^+ for an entailment test can be very **expensive**:

- The size of \mathcal{F}^+ can be exponential in the size of \mathcal{F} .
- lacksquare Blindly applying the three Armstrong axioms to FDs in $\mathcal F$ can be very inefficient.

A better strategy is to **focus** on the particular FD of interest.

Idea:

■ Given a set of attributes α , compute the **attribute closure** $\alpha_{\mathcal{F}}^+$:

$$\alpha_{\mathcal{F}}^{+} = \left\{ X \mid \alpha \to X \in \mathcal{F}^{+} \right\}$$

■ Testing $\alpha \to \beta \stackrel{?}{\in} \mathcal{F}^+$ then means testing $\beta \stackrel{?}{\subseteq} \alpha_{\mathcal{F}}^+$.

Attribute Closure

The attribute closure $\alpha_{\mathcal{F}}^+$ can be computed as follows:

```
1 Algorithm: AttributeClosure
   Input : \alpha (a set of attributes); \mathcal{F} (a set of FDs \alpha_i \to \beta_i)
   Output: \alpha_{\mathcal{F}}^+ (all attributes functionally determined by \alpha in \mathcal{F}^+)
2 x \leftarrow \alpha:
3 repeat
   x' \leftarrow x:
        foreach \alpha_i \to \beta_i \in \mathcal{F} do
              if \alpha_i \subseteq x then
              x \leftarrow x \cup \beta_i;
8 until x' = x:
9 return x;
```

Example

Given

$$\mathcal{F} = \{AB \rightarrow C, D \rightarrow E, AE \rightarrow G, GD \rightarrow H, ID \rightarrow J\}$$

for a relation R, sch(R) = ABCDEFGHIJ.

- \triangle *ABD* \rightarrow *GH* entailed by \mathcal{F} ?
- \triangle ABD \rightarrow HJ entailed by \mathcal{F} ?

Minimal Cover

 \mathcal{F}^+ is the **maximal cover** for \mathcal{F} .

 \to \mathcal{F}^+ (even \mathcal{F}) can be large and contain many redundant FDs. This makes \mathcal{F}^+ a poor basis to study a relational schema.

Thus: Construct a **minimal cover** \mathcal{F}^- such that

- $\mathcal{F}^- \equiv \mathcal{F}$, i.e., $(\mathcal{F}^-)^+ = \mathcal{F}^+$.
- In $\alpha \to \beta \in \mathcal{F}^-$, no attributes are redundant (in α or β):

$$\forall A \in \alpha : (\mathcal{F}^{-} - \{\alpha \to \beta\} \cup \{(\alpha - A) \to \beta\}) \not\equiv \mathcal{F}^{-}$$
$$\forall B \in \beta : (\mathcal{F}^{-} - \{\alpha \to \beta\} \cup \{\alpha \to (\beta - B)\}) \not\equiv \mathcal{F}^{-}$$

■ Every left-hand side in \mathcal{F}^- occurs only once. This is trivial to achieve, since $\{\alpha \to \beta, \alpha \to \gamma\} \equiv \{\alpha \to \beta\gamma\}$.

Constructing a Minimal Cover

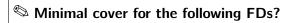
To construct the minimal cover \mathcal{F}^- :

Minimize left-hand sides:

Minimize right-hand sides:

Constructing a Minimal Cover

- **3 Eliminate** all $\alpha \to \emptyset$ (which might have resulted from 2).
- **4 Combine** all $\alpha \to \beta$, $\alpha \to \gamma$ into $\alpha \to \beta \gamma$.



$$F \rightarrow A$$

$$C \rightarrow E$$

$$\Xi o F$$

$$A \rightarrow D$$

$$F \to D$$

$$BH \rightarrow I$$

Normal Forms

Normal forms try to avoid the anomalies that we discussed earlier.

Codd originally proposed three normal forms (each stricter than the previous one):

- First normal form (1NF)
- Second normal form (2NF)
- Third normal form (3NF)

Later, Boyce and Codd added the

Boyce-Codd normal form (BCNF)

Toward the end of this chapter, we will briefly talk also about the

■ Fourth normal form (4NF).

First Normal Form

The first normal form states that **all attribute values must be atomic**.

That is, relations like

	Students			
Stud	IID_	Name	Address	SeminarTopic
08-	15	John Doe	74 Main St	{Databases, Systems Design}
47-	11	Mary Jane	8 Summer St	{Data Mining}
12-	34	Dave Kent	19 Church St	{Databases, Statistics,
				Multimedia}

are not allowed.

ightarrow This characteristic is already implied by our definition of a relation.

Likewise, nested tables (\nearrow slide 90) are not allowed in 1NF relations.

Boyce-Codd Normal Form (BCNF)

Given a schema $\mathrm{sch}(R)$ and a set of FDs \mathcal{F} , $\mathrm{sch}(R)$ is in **Boyce-Codd Normal Form (BCNF)** if, for every $\alpha \to A \in \mathcal{F}^+$ any of the following is true:

- $A \in \alpha$ (*i.e.*, this is a trivial FD)
- \bullet α contains a key (or: " α is a superkey")

Example: Consider a relation

Courses(CourseNo, Title, InstrName, Phone)

with the FDs

CourseNo \rightarrow Title, InstrName, Phone InstrName \rightarrow Phone .

This relation is **not** in BCNF, because in $InstrName \rightarrow Phone$, the left-hand side is not a key of the entire relation and the FD is not trivial.

Boyce-Codd Normal Form (BCNF)

A BCNF schema can have more than one key. E.g.,

- Arr sch(R) = ABCD,
- $F = \{AB \rightarrow CD, AC \rightarrow BD\}.$

This relation **is** in BCNF, because the left-hand side of each of the two FDs in $\mathcal F$ is a key.

BCNF prevents all of the anomalies that we saw earlier in this chapter.

→ By ensuring BCNF in our database designs, we can produce "good" relational schemas.

A beauty of BCNF is that its FDs can **easily be checked by a database system**.

ightarrow Only need to mark left-hand sides as **key** in the relational schema.

Third Normal Form (3NF)

Given a schema $\operatorname{sch}(R)$ and a set of FDs \mathcal{F} , $\operatorname{sch}(R)$ is in **third normal** form (3NF) if, for every $\alpha \to A \in \mathcal{F}^+$ any of the following is true:

- $A \in \alpha$ (*i.e.*, this is a trivial FD)
- \bullet α contains a key (or: " α is a superkey")
- $A \in \kappa$ for some key $\kappa \subseteq \operatorname{sch}(R)$.

Observe how the third case relaxes BCNF.

→ The *TakesExam*(*Student*, *Professor*, *Course*) relation on slide 215 **is** in 3NF:

```
Student, Professor \rightarrow Course
Course \rightarrow Professor.
```

→ But TakesExam is **not** in BCNF.

Third Normal Form (3NF)

Obviously, the additional condition allows some redundancy.

 \rightarrow What is the merit of that condition then?

Answer:

- There is none. 3NF was discovered "accidentally" in the search for BCNF.
- 2 As we shall see, relational schemas can always be converted into 3NF form losslessly, while in some cases this is not true for BCNF.

Note:

■ We will not discuss 2NF in this course. It is of no practical use today and only exists for historical reasons.

Schema Decomposition

As illustrated by example on slide 214, redundancy can be eliminated by **decomposing** a schema into a collection of schemas:

$$(\operatorname{sch}(R), \mathcal{F}) \rightsquigarrow (\operatorname{sch}(R_1), \mathcal{F}_1), \ldots, (\operatorname{sch}(R_n), \mathcal{F}_n)$$
.

The corresponding relations can be obtained by **projecting** on columns of the original relation:

$$R_i = \pi_{\operatorname{sch}(R_i)} R$$
.

While decomposing a schema, we do **not** want to **lose information**.

Lossless and Lossy Decompositions

A decomposition is **lossless** if the original relation can be **reconstructed** from the decomposed tables:

$$R = R_1 \bowtie \cdots \bowtie R_n$$
.

For **binary** decompositions, losslessness is **guaranteed** if any of the following is true:

- $(\operatorname{sch}(R_1) \cap \operatorname{sch}(R_2)) \to \operatorname{sch}(R_1) \in \mathcal{F}^+$
- $\bullet \left(\operatorname{sch}(R_1) \cap \operatorname{sch}(R_2) \right) \to \operatorname{sch}(R_2) \in \mathcal{F}^+$

"The decomposition is guaranteed to be lossless if the intersection of attributes of the new tables is a key of at least one of the two relations."

Dependency-Preserving Decompositions

For a lossless decomposition of R, it would always be possible to **re-construct** R and check the original set of FDs \mathcal{F} over the re-constructed table.

- → But re-construction is **expensive**.
- \rightarrow We'd rather like to guarantee that FDs $\mathcal{F}_1, \ldots, \mathcal{F}_n$ over decomposed tables R_1, \ldots, R_n entail all FDs in \mathcal{F} .

A decomposition is dependency-preserving if

$$\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_n \equiv \mathcal{F}$$
.

Example

Consider a zip code directory

where

$$ZipCode \rightarrow City, State$$

 $Street, City, State \rightarrow ZipCode$.

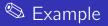
A lossless decomposition would be

However, the FD *Street*, City, $State \rightarrow ZipCode$ cannot be assigned to either of the two relations. This decomposition is **not dependency-preserving**.

Algorithm for BCNF Decomposition

BCNF can be obtained by repeatedly **decomposing** a table **along an FD that violates BCNF**:

```
1 Algorithm: BCNFDecomposition
Input: (\operatorname{sch}(R), \mathcal{F})
Output: Schema \{(\operatorname{sch}(R_1), \mathcal{F}_1), \dots, (\operatorname{sch}(R_n), \mathcal{F}_n)\} in BCNF
2 Decomposed \leftarrow \{(\operatorname{sch}(R), \mathcal{F})\};
3 while \exists (\operatorname{sch}(S), \mathcal{F}_S) \in Decomposed that is not in BCNF do
4 | Let \alpha \to \beta be an FD in \mathcal{F}_S that violates BCNF;
5 | Decompose S into S_1(\alpha\beta) and S_2((S-\beta)\cup\alpha);
6 return Decomposed;
```



Consider

R(ABCDEFGH)

with

 $\begin{array}{cccc} ABH & \rightarrow & C \\ A & \rightarrow & DE \\ BGH & \rightarrow & F \\ F & \rightarrow & ADH \\ BH & \rightarrow & GE \end{array}$

Properties of BCNF Decomposition

Algorithm *BCNFDecomposition* always yields a **lossless decomposition**.

- Attribute set α is contained in S_1 and S_2 (line 5).
- lacksquare $\alpha \to \beta \in \mathcal{F}_S$ (line 4), so $\alpha \to \operatorname{sch}(S_1)$.

We already saw that BCNF decomposition is **not always dependency-preserving**.

BCNF decomposition is **not deterministic**. Different choices of FDs in line 4 might lead to different decompositions.

 \rightarrow Those different decompositions might even preserve more or less dependencies!

3NF Decomposition Through Schema Synthesis

The **3NF synthesis algorithm** produces a 3NF schema that is always **lossless** and **dependency-preserving**:

- **1** Compute the **minimal cover** \mathcal{F}^- of the given set of FDs \mathcal{F} .
- 2 For each $\alpha \to \beta \in \mathcal{F}^-$ create a table $R_{\alpha}(\alpha\beta)$.
- If **none** of the constructed tables from step 2 contains a key of the original relation R, add one relation $R_{\kappa}(\kappa)$, where κ is a (candidate) key in R.
- 4 Steps 2 and 3 might lead to relations R_1 and R_2 , where R_1 is contained in R_2 . If this is the case, discard R_1 .

Example

 \bigcirc Given a table R(ABCDEFGH) with the FDs

$$ABH \rightarrow C$$
 $A \rightarrow DE$ $BGH \rightarrow F$ $F \rightarrow ADH$ $BH \rightarrow GE$

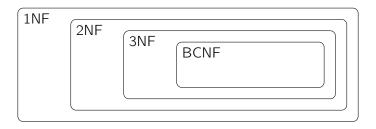
determine a corresponding 3NF schema.

Example (cont.)

Normal Forms

Normal forms are increasingly restrictive.

ightarrow In particular, every BCNF relation is also 3NF.



- Our decomposition algorithms produce lossless decompositions.
 - \rightarrow It is **always possible** to **losslessly** transform a relation into 1NF, 2NF, 3NF, BCNF.
- BCNF decomposition might not be dependency-preserving. Preservation of dependencies can only be guaranteed up to 3NF.

BCNF vs. 3NF

BCNF decomposition is **non-deterministic**.

ightarrow Some decompositions might be **dependency-preserving**, some might not.

Decomposition strategy:

- Establish 3NF schema (through synthesis; dependency preservation guaranteed).
- Decompose resulting schema to obtain BCNF.
- → This strategy typically leads to "good" (dependency-preserving if possible) BCNF decompositions.

Fourth Normal Form (4NF)

Not all redundancies can be explained through functional dependencies.

Books			
ISBN	Author	Keyword	
3486598341	Kemper	Databases	
3486598341	Kemper	Computer Science	
3486598341	Eickler	Databases	
3486598341	Eickler	Computer Science	
0321268458	Kifer	Databases	
0321268458	Bernstein	Databases	
0321268458	Lewis	Databases	

- ightarrow There is no clear association between authors and keywords, and **no** functional dependencies exist for this table.
- \rightarrow This relation is in BCNF!

Join Dependencies

Observe that the relation satisfies the following property:

$$Books = \pi_{ISBN,Author}(Books) \bowtie \pi_{ISBN,Keyword}(Books)$$
.

A join dependency, written as

$$sch(R) = \alpha \bowtie \beta$$
 ,

is a **constraint** specifying that, for any legal instance of R,

$$R = \pi_{\alpha}(R) \bowtie \pi_{\beta}(R)$$
.

Fourth Normal Form (4NF)

Given a schema $\operatorname{sch}(R)$ and a set of join and dependencies $\mathcal J$ and $\mathcal F$, $\operatorname{sch}(R)$ is in **fourth normal form (4NF)** if, for every join dependency $\operatorname{sch}(R) = \alpha \bowtie \beta$ entailed by $\mathcal F$ and $\mathcal J$, either of the following is true:

- The join dependency is trivial, *i.e.*, $\alpha \subseteq \beta$.
- lacktriangledown $\alpha \cap \beta$ contains a key of R (or: " α is a superkey of R").

(Relation *Books* is not in 4NF, because *ISBN* is not a key.)

4NF relations are also BCNF:

- Suppose sch(R) with $\alpha \to \beta$ is in 4NF (and $\alpha \cap \beta = \emptyset$).
- Then, $R = \pi_{\alpha\beta}(R) \bowtie \pi_{\operatorname{sch}(R)-\beta}(R)$ (\nearrow slide 238).
- Thus, $\alpha\beta\cap(\mathrm{sch}(R)-\beta)=\alpha$ is a superkey of R (4NF property).
- BCNF requirement satisfied. ✓

Multi-Valued Dependencies (MVDs)

Join dependencies are also called **multi-valued dependencies**.

The MVD

$$\alpha \rightarrow \beta$$

is another notation for the join dependency

$$sch(R) = \alpha\beta \bowtie \alpha(sch(R) - \beta)$$
.

Intuitively,

"The set of values in columns β associated with every α is independent of all other columns."

Note:

■ MVDs always come in pairs. If $\alpha \twoheadrightarrow \beta$ holds, then $\alpha \twoheadrightarrow (sch(R) - \beta)$ automatically holds as well.

Obtaining 4NF Schemas

Decomposing a schema

$$R(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_k)$$

into

$$R_1(A_1,...,A_n,B_1,...,B_m)$$
 and $R_2(A_1,...,A_n,C_1,...,C_k)$

is **lossless** if and only if (≯ slide 238)

$$A_1, \ldots, A_n \twoheadrightarrow B_1, \ldots B_m \quad (\text{or } A_1, \ldots, A_n \twoheadrightarrow C_1, \ldots B_k)$$
.

Thus: (intuition for obtaining 4NF)

■ Whenever there is a lossless (non-trivial) decomposition, decompose.