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Part X

B-Trees
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Memory Hierarchy

CPU
(with registers)

caches

main memory

hard disks

tape library

capacity

bytes

kilo-/megabytes

gigabytes

terabytes

petabytes

latency

< 1 ns

< 10 ns

70–100 ns

3–10 ms

varies

fast, but expensive and small, memory close to CPU

larger, slower memory at the periphery

Try to hide latency by using the fast memory as a cache.
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Latency vs. Bandwidth

“Slow” memory typically means high latency.

Example: Samsung HD642JJ Hard Drive (640 GB, SATA 3)

rotational speed: 7200 rpm

sequential read bandwidth: ≈ 106 MB/s (↗ hdparm -t)

random access time: 15.2 ms (measured)

� Time it takes to read 1,024 random 4 kB blocks?

1024× 15.2 ms random access time 15.56 s

4 MB÷ 106 MB/s transfer time 0.04 s

total time 15.60 s
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Ways to Improve I/O Performance

The latency penalty is hard to avoid.

However:

Throughput can be increased rather easily by exploiting parallelism.

Idea: Use multiple disks and access them in parallel.

I TPC-C: An industry benchmark for OLTP

The current number one system (Oracle 11g RAC on SPARC) uses

11,040 flash drives (24 GB each) and 720 hard drives (!)

(plus drives for OS, etc.),

connected with 8 Gbit Fibre Channel,

yielding 30 tpmC (≈ 60 M transactions per minute).
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Consequences of the Bandwidth↔ Latency Gap

To combat the latency problem:

1 Databases access and organize the disk with a page granularity.

Read larger chunks to amortize high latency.

Page size: at least 4 kB, better more; up to ≈ 64 kB.

2 Use sequential access and/or aggressive prefetching (read-ahead).

But must read many pages ahead to actually avoid penalty.
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Finding a Needle in a Haystack

SELECT *

FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8800 AND 8999

To answer this query, we could

1 sort the table on disk (in ZIPCODE order).

2 To answer queries, then use binary search to find first

qualifying tuple, and scan as long as ZIPCODE < 8999.

4
1
0
4
*

4
1
2
3
*

4
2
2
2
*

4
4
5
0
*

4
5
2
8
*

5
0
1
2
*

6
3
3
0
*

6
4
2
3
*

8
0
5
0
*

8
1
0
5
*

8
1
8
0
*

8
2
4
5
*

8
2
8
0
*

8
4
0
6
*

8
5
7
0
*

8
6
0
0
*

8
6
0
4
*

8
7
0
0
*

8
8
0
8
*

8
8
8
7
*

8
9
1
0
*

8
9
5
3
*

9
0
1
6
*

9
2
0
0
*

9
5
3
2
*

scan

k* denotes the full data record with search key k.
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Ordered Files and Binary Search
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scan

page 0 page 1 page 2 page 3 page 4 page 5 page 6 page 7 page 8 page 9 page 10 page 11 page 12

" Need to read only log2(# tuples) to find the first match.

% Need to read about as many pages for this.

(The whole point of binary search is that we make far, unpredictable

jumps. This largely defeats prefetching.)
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Binary Search and Database Pages

Observations:

Make rather far jumps initially.

→ For each step read full page, but inspect only one record.

Last O (log2 pagesize) steps stay within one page.

→ I/O cost is used much more efficiently here.
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Binary Search and Database Pages

Idea: “Cache” those records that might be needed for the first phase.

→ If we can keep the cache in memory, we can find any record with

just a single I/O.

� Is this assumption reasonable?

E.g., 8 kB page size; 50 B records ⇒ (up to) 160 records per page

DBA rule-of-thumb: RAM size & 2–3 % database size "
E.g., TPC-C leader: 13.5 TB RAM in total (27× 512 GB).
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Large Data

What if my data set is really large?

“Cache” will span many pages, too.

(In practice, we’ll organize the cache just like any other database object.)

Thus: “cache the cache” → hierarchical “cache”

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · · · · · · · ·

· · ·

in
n

er
n
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leave nodes

B-trees are essentially such a “hierarchical cache.”
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B-Trees
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• • •

All nodes are the size of a page

→ hundreds of entries per page

→ large fanout, low depth

Search effort: logfanout(# tuples)

p0 t1 p1 t2 p2 · · · t2d p2d
• • • •

pointerindex entry

↗ Rudolf Bayer and Edward McCreight. Organization and Maintenance of

Large Ordered Indexes, Acta Informatica 1(3), 1972.
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B-Trees

Each B-tree node contains

A set of index entries, which include

the value of a search key (e.g., 4711) and

“associated information” (indicated by *)

(either a full data tuple or a reference to a tuple).

A set of child pointers, pointing to a child page of the B-tree.

Each tree node (except the root) contains at least d and at most 2d

index entries (“minimum 50 % full”; on previous slide: d = 2).

→ We call d the order of the B-tree.

→ In practice, d is large (few hundreds).

B-trees are balanced at all times.
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Searching a B-Tree

1 Function: tree_search (k, node)

2 if matching *i found on node then

3 return *i ;

4 if node is a leaf node then

5 return not found;

6 switch k do

7 case k < k0
8 return tree_search (k, p0);

9 case ki < k < ki+1
10 return tree_search (k, pi);

11 case k2d < k

12 return

tree_search (k, p2d);

Invoke with

node = root node.

Note that B-trees are an

ordered index structure.

→ Support equality and

range predicates
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B-Tree Modifications

Goal: Keep B-tree balanced at all times.15

� Why is this desirable?

Ensure predictable runtime characteristics of B-tree operations

(searches in particular).

Thus: Define routines for insertion and deletion that leave the B-tree

properties intact.

15I.e., every root-to-leaf path must have the same length.
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Inserting into a B-Tree

Sketch of the insertion procedure for entry k*:

1 Find leaf page n where we would expect the entry for k .

2 If n has enough space to hold the new entry (i.e., at most 2d − 1

entries in n), simply insert k* into n.

3 Otherwise node n must be split into n and n′ and a new separator

has to be inserted into the parent of n.

Splitting happens recursively and may eventually lead to a split of

the root node (increasing the tree height).

→ B-trees grow at the root, not at the leaves!
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B-Tree Insert: Examples (Insert without Split)
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Insert new entry with key 4222.

→ Enough space in node 3, simply insert.
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B-Tree Insert: Examples (Insert with Leaf Split)
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Insert key 6330.

→ Must split node 4.

→ Middle entry goes into node 1.

5
0
1
2
*

6
3
3
0
*

node 4

8
0
5
0
*

8
1
0
5
*

new node 9

6
4
2
3
*

new separator
new entry

c© Jens Teubner · Information Systems · Summer 2014 350



B-Tree Insert: Examples (Insert with Inner Node Split)
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After 8180, 8245, 6435 insert key 4104.

→ Must split node 3.

→ Node 1 overflows → split it

→ New separator goes into root 4
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from leaf split
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Insert: Root Node Split

Splitting starts at the leaf level and continues upward as long as

index nodes are fully occupied.

Eventually, this can lead to a split of the root node:

Split like any other inner node.

Use the separator to create a new root.

The root node is the only node that may have an occupancy of less

than 50 %.

This is the only situation where the tree height increases.

� How often do you expect a root split to happen?

E.g., B-tree over 8 byte integers, 4 KB pages;

pointers encoded as 8 byte integers.

128–256 index entries per page.

An index of height h indexes at least 128h

records, typically more.

h # records

2 16,000

3 2,000,000

4 250,000,000

c© Jens Teubner · Information Systems · Summer 2014 352



Keys and Tuples

A B-tree maintains key values together with “associated information”.

The “associated information” * can be

Full Data Tuples

The B-tree becomes the mechanism to organize the table data

→ The table is physically ordered according to the key attribute.

→ We call this a clustered index or an index-organized table.

→ There can be at most one clustered index per table.

Pointers to Actual Tuples

These pointers are also called record identifiers or RIDs.

→ Most systems use 〈pageno, pos. within page〉 to encode RIDs.

→ Such indexes are also called secondary indexes.

→ There can be arbitrarily many secondary indexes.

Many systems (e.g., DB2) only support the latter index type.
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B-Trees → B+-trees

Key to the efficiency of B-trees is their high fanout.

high fanout → low tree depth → fast root-to-leaf navigation

This gives incentive to maximize fanout:

→ Do not store * in inner nodes

(Rather use that space to increase d / store more keys.)

→ Inner nodes are then used for root-to-leaf navigation only.

→ For every data tuple, there is on leaf-level index entry.

→ The resulting index structure is then called B+-tree.

Real systems today always use B+-trees.

→ When database people say “B-tree,” they typically mean “B+-tree.”
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B+-trees
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• • •

Inner nodes do not store tuples or RIDs

→ only used to navigate to leaves

→ higher fanout, lower depth

Only leaves contain (references to) tuple

data (indicated here with *)

p0 k1 p1 k2 p2 · · · k2dp2d
• • • •

pointerkey value
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Searching a B+-tree

1 Function: search (k)

2 return tree_search (k, root);

1 Function: tree_search (k, node)

2 if node is a leaf then

3 return node;

4 switch k do

5 case k ≤ k0
6 return tree_search (k, p0);

7 case ki < k ≤ ki+1
8 return tree_search (k, pi);

9 case k2d < k

10 return

tree_search (k, p2d);

All searches now navigate to

a leaf node.

→ Makes search effort also

more predictable.

Function search (k) returns

a pointer to the leaf node

that contains potential hits

for search key k .
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B+-tree Insert: Examples (Insert without Split)
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Insert new entry with key 4222.

→ Enough space in node 3, simply insert.

(Same as in B-tree)
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B+-tree Insert: Examples (Insert with Leaf Split)
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Insert key 6330.

→ Must split node 4.

→ New separator goes into node 1.

But keep entry in node 4! 5
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B+-tree Insert: Examples (Insert with Inner Node Split)
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After 5219, 5476, insert key 4104.

→ Must split leaf node 3.

→ Inner node 1 overflows → split it

→ New separator goes into root

Splitting the inner node works analogously

to B-tree.
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B+-tree Insertion Algorithm

1 Function: tree_insert (k, rid, node)

2 if node is a leaf then

3 return leaf_insert (k, rid, node);

4 else

5 switch k do

6 case k ≤ k0
7 〈sep, ptr〉 ← tree_insert (k, rid, p0);

8 case ki < k ≤ ki+1
9 〈sep, ptr〉 ← tree_insert (k, rid, pi);

10 case k2d < k

11 〈sep, ptr〉 ← tree_insert (k, rid, p2d);

12 if sep is null then

13 return 〈null, null〉;

14 else

15 return split (sep, ptr, node);

see tree_search ()
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1 Function: leaf_insert (k, rid, node)

2 if another entry fits into node then
3 insert 〈k, rid〉 into node ;
4 return 〈null, null〉;
5 else
6 allocate new leaf page p ;

7 take
{
〈k+1 , p+1 〉, . . . , 〈k+2d+1, p

+
2d+1〉

}
:= entries from node ∪ {〈k, ptr〉}

8 leave entries 〈k+1 , p+1 〉, . . . , 〈k+d+1, p
+
d+1〉 in node ;

9 move entries 〈k+d+2, p
+
d+2〉, . . . , 〈k

+
2d+1, p

+
2d+1〉 to p ;

10 return 〈k+d+1, p〉;

1 Function: split (k, ptr, node)

2 if another entry fits into node then
3 insert 〈k, ptr〉 into node ;
4 return 〈null, null〉;
5 else
6 allocate new leaf page p ;

7 take
{
〈k+1 , p+1 〉, . . . , 〈k+2d+1, p

+
2d+1〉

}
:= entries from node ∪ {〈k, ptr〉}

8 leave entries 〈k+1 , p+1 〉, . . . , 〈k+d , p
+
d 〉 in node ;

9 move entries 〈k+d+2, p
+
d+2〉, . . . , 〈k

+
2d+1, p

+
2d+1〉 to p ;

10 set p0 ← p+d+1 in node;

11 return 〈k+d+1, p〉;



B+-tree Insertion Algorithm

1 Function: insert (k, rid)

2 〈key , ptr〉 ← tree_insert (k, rid, root);

3 if key is not null then

4 allocate new root page r ;

5 populate n with

6 p0 ← root;
7 k1 ← key ;

8 p1 ← ptr ;

9 root ← r ;

insert (k, rid) is called from outside.

Note how leaf node entries point to RIDs, while inner nodes contain

pointers to other B+-tree nodes.
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Example

Example: Webserver access log (people.inf.ethz.ch)

table cardinality: 11 million tuples (710K data pages)

distinct IP addresses: 181,628 (stored as CHAR (15))

database: IBM DB2 9.7

B+-tree on IP addresses:

25,151 index pages total:

1 root node

110 second-level nodes; average fanout: 230

25,040 leaf-level nodes: 1–77 keys per node
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Deletion

If a node is sufficiently full (i.e., contains at least d + 1 entries, we

may simply remove the entry from the node.

Note: Afterward, inner nodes may contain keys that no longer

exist in the database. This is perfectly legal.

Merge nodes in case of an underflow (“undo a split”):
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“Pull” separator into merged node.
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Deletion

�
It’s not quite that easy. . .

4
2
2
2

5
0
1
2

5
8
2
3

8
1
0
5

8
2
8
0

3
4
6
0

6
4
2
3

8
5
0
0

4
2
2
2

5
0
1
2

6
4
2
3

8
2
8
0

3
4
6
0

5
8
2
3

8
5
0
0

?

redistribution

Merging only works if two neighboring nodes were 50 % full.

Otherwise, we have to re-distribute:

“rotate” entry through parent

Redistribution is complex and expensive.

→ Real systems usually do not implement deletion “by the book.”
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I B+-trees in Real Systems

Actual systems often avoid the cost of merging and/or

redistribution, but relax the minimum occupancy rule.

E.g., IBM DB2 UDB:

The MINPCTUSED parameter controls when the system should

try a leaf node merge (“on-line index reorg”).

Inner nodes are never merged

(→ need to do full table reorg for that).

To improve concurrency, systems sometimes only mark index

entries as deleted and physically remove them later (e.g., IBM DB2

UDB “type-2 indexes”)

→ Resulting index entries are also called ghost records.
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B+-trees and Sorting

A typical situation (for a secondary B+-tree) looks like this:

. . . . . . . . .

. . .

. . .

index file

data file

� What are the implications when we want to execute

SELECT * FROM CUSTOMERS ORDER BY ZIPCODE ?

“Random” access to data pages when we scan the B+-tree.

Page I/Os needed: ≈ number of tuples in CUSTOMERS.

For comparison: Using external sorting, we could sort the entire file

with 3–5 sequential file reads.
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Composite Keys

B+-trees can (in theory16) be used to index everything with a defined

total order, e.g.:

integers, strings, dates, . . . , and

concatenations thereof (based on lexicographical order).

E.g., in most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME);

A useful application are, e.g., partitioned B-trees:

Leading index attributes effectively partition the resulting B+-tree.

↗ G. Graefe: Sorting And Indexing With Partitioned B-Trees. CIDR 2003.

16Some implementations won’t allow you to index, e.g., large character fields.
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Partitioned B-trees

CREATE INDEX ON TABLE STUDENTS (SEMESTER, ZIPCODE);

� What types of queries could this index support?

The resulting B+-tree is going to look like this:

· · ·
SEMESTER = 1 SEMESTER = 2 SEMESTER = n

It can efficiently answer queries with, e.g.,

equality predicates on SEMESTER and ZIPCODE,

equality on SEMESTER and range predicate on ZIPCODE, or

a range predicate on SEMESTER only.
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