Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2014

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Part V

Execution on Multiple Cores

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Example: Star Joins

Task: run parallel instances of the query (* introduction)
dimension

SELEC1 SUM(lo_revenue)

FROM part, lineorder

WHERE p_partkey = lo_partkey
AND p_category <= 5

fact table

¥ To implement X use either
SN m a hash join or
o lineorder . .
‘ m an index nested loops join.
part

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Execution on “Independent” CPU Cores

Co-run independent instances on different CPU cores.

HJ alone

I 1+

HJ -+ INLJ

INLJ alone
[INLJ + HJ

INLJ + INLJ

60 % 40% 20% 0%
performance degradation

Concurrent queries may seriously affect each other’s performance.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Shared Caches

In Intel Core 2 Quad systems, two cores share an L2 Cache:

CPU CPU CPU CPU
T T T T
| L1 Cache | | L1 Cache | | L1 Cache | | L1 Cache |
L2 Cache L2 Cache
))

| main memory |

What we saw was cache pollution.

— How can we avoid this cache pollution?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Cache Sensitivity

Dependence on cache sizes for some TPC-H queries:

(a) L2 Miss Rate
Q1 Q5 VQ8 = Q18 +Q20 < Q21

50%

40% 1 /’
30% |

20% | ﬁ: \
10% gy —— b
0% b—8—8— 55 —o—s—=

4MB 3.5MB 3MB 2.5MB 2MB 1.5MB 1MB 512KB
L2 Cache Size

(b) CPI
w®,Q1 Q5 VQ8 AQ18 Q20 < Q21

45
4
315
3 v
25
2
15
1
0.5 T T T T T T T 1
4MB 3.5MB 3MB 2.5MB 2MB 1.5MB 1MB 512KB

L2 Cache Size

Some queries are more sensitive to cache sizes than others.

m cache sensitive: hash joins

m cache insensitive: index nested loops joins; hash joins with very

small or very large hash table

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Locality Strength

This behavior is related to the locality strength of execution plans:
Strong Locality
small data structure; reused very frequently
m e.g., small hash table
Moderate Locality
frequently reused data structure; data structure = cache size
m e.g., moderate-sized hash table
Weak Locality

data not reused frequently or data structure > cache size
m e.g., large hash table; index lookups

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Execution Plan Characteristics

Locality effects how caches are used:

strong moderate weak
large large
large small

cache pollution

amount of cachie used small
amount of cache needed small

Plans with weak locality have most severe impact on co-running queries.

Impact of co-runner on query:
strong moderate weak

strong low moderate high
moderate moderate high high
weak low low low

Data Processing on Modern Hardware - Summer 2014

© Jens Teubner -

Experiments: Locality Strength

Index Join to Index Join —+—

Index Join to Hash Join ---x---

Hash Join to Index Join ---%---

Hash Join to Hash Join &

Index Join to Index Join (bitmap scan) — -

60% T T T T T T T T T T T T T T
/x\ - X ~
0, - / N - e S~ -
50% SN Ty
X B

40% [/ TR .

Performance Degradation

04 08 11 15 19 23 3 34 41 53 7.1 89 104123153186
Hash Table Size (MB)

Source: Lee et al. MCC-DB: Minimizing Cache Conflicts
in Multi-core Processors for Databases. VLDB 2009.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Locality-Aware Scheduling

An optimizer could use knowledge about localities to schedule queries.
m Estimate locality during query analysis.

m Index nested loops join — weak locality
m Hash join:

hash table < cache size — strong locality
hash table =~ cache size — moderate locality
hash table > cache size — weak locality

m Co-schedule queries to minimize (the impact of) cache pollution.

% Which queries should be co-scheduled, which ones not?
m Only run weak-locality queries next to weak-locality queries.
— They cause high pollution, but are not affected by pollution.

m Try to co-schedule queries with small hash tables.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Experiments: Locality-Aware Scheduling

PostgreSQL; 4 queries (different p_categorys); for each query: 2 x hash
join plan, 2 x INLJ plan; impact reported for hash joins:

hash table size
0% 0.78 MB 2.26 MB 410 MB 8.92 MB
’]

-10%

-20% t

-30% 7

performance impact

-40% 1

Source: Lee et al. VLDB 2009.

-50 %

[] default scheduling [] locality-aware scheduling

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Cache Pollution

Weak-locality plans cause cache pollution, because they use much cache
space even though they do not strictly need it.

By partitioning the cache we could reduce pollution with little impact on
the weak-locality plan.

| moderate-locality plan | | weak-locality plan |

shared cache !

But:

m Cache allocation controlled by hardware.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Cache Organization

Remember how caches are organized:

m The physical address of a memory block determines the cache set
into which it could be loaded.

kS

N

byte address

tag | setindex | offset

ES

block address ———!

Thus,

m We can influence hardware behavior by the choice of physical
memory allocation.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Page Coloring

The address <> cache set relationship inspired the idea of page colors.
m Each memory page is assigned a color.®
m Pages that map to the same cache sets get the same color.

cache set
\
cache

memory page
< memory

Q How many colors are there in a typical system?

®Memory is organized in pages. A typical page size is 4 kB.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Page Coloring

m By using memory only of certain colors, we can effectively restrict
the cache region that a query plan uses.

Note that
m Applications (usually) have no control over physical memory.

m Memory allocation and virtual <+ physical mapping are handled by
the operating system.

m We need OS support to achieve our desired cache partitioning.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

MCC-DB: Kernel-Assisted Cache Sharing

MCC-DB (“Minimizing Cache Conflicts"):
m Modified Linux 2.6.20 kernel

m Support for 32 page colors (4 MB L2 Cache: 128 kB per color)
m Color specification file for each process (may be modified by
application at any time)

m Modified instance of PostgreSQL
m Four colors for regular buffer pool

% Implications on buffer pool size (16 GB main memory)?

m For strong- and moderate-locality queries, allocate colors as
needed (i.e., as estimated by query optimizer)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Moderate-locality hash join and weak-locality co-runner (INLJ):

50 %
weak locality (INLJ) _
g 0% — T 8
Q]
o : _)
single-threaded execution Q
8 30% 1 ’ S
= 7
c 20% + 8
8 i
N moderate locality (HJ) g
10% 1 3
wn
single-threaded executon
single-thr
0% ¢ 9 ¢ ¢ ¢ ¢
32 24 16 8 4

Colors to Weak-Locality Plan

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Moderate-locality hash join and weak-locality co-runner (INLJ):

70 weak locality (INLJ) ——
60+ 0 T N g :
= single-threaded execution §
B 501 moderate locality (HJ) 1 o
o | T Q
£ 40 ¢ i . s
= single-threaded execution =
c 4+
S 307 T
5 g
3 20+ I3
x o
] 5
10 | Lg
0 | | | |

32 24 16 8 4
Colors to Weak-Locality Plan

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Experiments: MCC-DB

PostgreSQL; 4 queries (different p_categorys); for each query: 2 x hash
join plan, 2 x INLJ plan; impact reported for hash joins:

hash table size
0.78 MB 2.26 MB 410 MB 8.92 MB

0%

-10%

-20% t

-30% 7

performance impact

-40% 1

Source: Lee et al. VLDB 2009.

-50 %

[] default [locality-aware [] page coloring

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Highly Concurrent Workloads

Databases are often faced with highly concurrent workloads.

Good news:

m Exploit parallelism offered by hardware (increasing number of cores).
Bad news:

m Increases relevance of synchronization mechanisms.

Two levels of synchronization in databases:

Synchronize on User Data
to guarantee transaction semantics; database terminology: locks

Synchronize on Database-Internal Data Structures
short-duration locks; called latches in databases

We'll now look at the latter, even when we say “locks.”

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Lock (Latch) Implementation

There are two strategies to implement locking:

Blocking (operating system service)

m De-schedule waiting thread until lock becomes free.
m Cost: two context switches (one to sleep, one to wake up)
— ~ 12-20 usec

Spinning (can be done in user space)

m Waiting thread repeatedly polls lock until it becomes free.
m Cost: two cache miss penalties (if implemented well)
— ~ 150 nsec

m Thread burns CPU cycles while spinning.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Implementation of Spinlocks

D Implementation of a spinlock?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Thread Synchronization

Blocking:
thread working lock held
thread 1
thread 2 WZA R
de-schedule wake-up
Spinning:

thread working lock held

thread 1 IR
B —

thread spinning _ﬂskh_ort delay

thread 2

time

time

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Experiments: Locking Performance

Sun Niagara Il (64 hardware contexts):

Throughput (ktps)
150 - 1

120 +

Blocking

Spinning

100% load

c
S =
JEQ)
(DC\I
E=a%}
§0O
o
O =
o 5
£<
Q‘.
>
()]
e}
g =
=]
N5
(0]
-
a O
Ew
c 5
] &
c
< €
S @
- E
(&)
(OB o))
22
8«:
n =

0 32 4 96 128 160 192
Threads

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Spinning Under High Load

Under high load, spinning can cause problems:

thread 1 " time
_
thread 2) |

m More threads than hardware contexts.
m Operating system preempts running task §
m Working and spinning threads all appear busy to the OS.
m Working thread likely had longest time share already
— gets de-scheduled by OS.
m Long delay before working thread gets re-scheduled.

m By the time working thread gets re-scheduled (and can now make
progress), waiting thread likely gets de-scheduled, too.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Machine Util (%)
[Work B Contention [Prio-Invert
100 W

80 = m
60 -
40 .

20 1

0 I I I I I I I I 1

15 31 47 63 71 95 127 159 191
Client Threads

I
Source: Johnson et al. Decoupling Contention
Management from Scheduling. ASPLOS 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

The Right Tool for the Right Purpose

The properties of spinning and blocking suggest their use for different
purposes:

m Spinning features quick lock hand-offs.
— Use spinning to coordinate access to a shared data structure
(contention).
m Blocking reduces system load (~ scheduling).

— Use blocking at longer time scales.
— Block when system load increases to reduce scheduling
overhead.

Idea: Monitor system load (using a separate thread) and control
spinning/blocking behavior off the critical code path.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Load Controller

The load controller periodically
m Determines current load situation from the OS.

m If system gets overloaded
m “invite” threads to block with help of a sleep slot buffer.

m Size of sleep slot buffer: number of threads that should block.

m When load gets less
m controller wakes up sleeping threads, which register in sleep

slot buffer before going to sleep.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Lock Handling

A thread that wants to acquire a lock
m Checks the regular spin lock.

m If the lock is already taken, it tries to enter the sleep slot buffer and
blocks (otherwise it spins).

m The load controller will wake up the thread in time.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Controller Overhead

Throughput (ktps)
130 98% load

110% load

0,
110 - 150% load

90 -

70 ! \ !

100 1000 10000 100000
Update delay (us)

Source: Johnson et al. Decoupling Contention
Management from Scheduling. ASPLOS 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Performance Under Load

Normalized Throughput

80 1 pthread
W TP-MCS
60 aLc
40 -
20 -
o0 -
1 15 31 63 71 95 127 1 15 31 63 71 95 127 1 15 31 63 71 95 127
Raytrace TM-1 TPC-C

Source: Johnson et al. Decoupling Contention Management from Scheduling.
ASPLQOS 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

	Execution on Multiple Cores
	Joins on Independent Cores
	Shared Caches
	Cache Sensitivity
	Locality-Aware Scheduling
	Page Coloring

	Concurrency in DBMSs
	Lock (Latch) Implementation
	Interaction: Locks and OS Scheduling
	Synchronization vs. Load Control

