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Part V

Execution on Multiple Cores
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Example: Star Joins

Task: run parallel instances of the query (↗ introduction)

SELECT SUM(lo_revenue)

FROM

dimension

part, lineorder
fact table

WHERE p_partkey = lo_partkey

AND p_category <= 5

1

σ

part

lineorder

To implement 1 use either

a hash join or

an index nested loops join.
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Execution on “Independent” CPU Cores

Co-run independent instances on different CPU cores.

0 %20 %40 %60 %

performance degradation

HJ alone

HJ + HJ

HJ + INLJ

INLJ alone

INLJ + HJ

INLJ + INLJ

Concurrent queries may seriously affect each other’s performance.
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Shared Caches

In Intel Core 2 Quad systems, two cores share an L2 Cache:

main memory

L2 Cache L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

CPU CPU CPU CPU

What we saw was cache pollution.

→ How can we avoid this cache pollution?
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Cache Sensitivity

Dependence on cache sizes for some TPC-H queries:

1.4 Our Contributions
The contributions of our work are three-fold. First, we

have identified the cache conflict problem of running a DBMS
in multi-core processors. We have also shown that techni-
cal challenges to address this problem are beyond the ability
scope of the DBMS itself. Second, we have made a strong
case for a collaboration between the DBMS and the OS to
achieve the goal of minimizing cache conflicts. We have de-
signed and implemented MCC-DB that effectively breaks the
performance bottleneck in the shared LLC. Finally, we have
evaluated MCC-DB on a modified PostgreSQL and a mod-
ified Linux kernel, and have shown that MCC-DB can re-
duce query execution times by up to 33% for warehouse-style
queries. To our best knowledge, MCC-DB is the first multi-
core cache optimized DBMS system with a well documented
design and performance evaluation. We believe that this hy-
brid system framework can be easily adopted to both com-
mercial and open source databases in practice.

The rest part of this paper is organized as follows. Section
2 discusses the cache conflict problem. Section 3 introduces
our MCC-DB framework. Section 4 presents how to deter-
mine query locality. Section 5 describes MCC-DB without
OS support, while section 6 describes MCC-DB with cache
partitioning support of the OS. Performance evaluation is in
section 7. Section 8 presents related work. We conclude this
paper in the last section.

2. CACHE CONFLICTS ON MULTI-CORES
Increasing the number of processing cores can improve the

inter-query parallelism for DBMS transactions. However,
the limited cache space would be shared by more concur-
rent query executions, which can lead to unnecessary cache
conflicts and cause undesired performance degradations. In
essence, the cache conflict occurs due to three reasons.

1. Different query executions can have very different data
locality strengths, which determine how much a query
can benefit from the allocated cache space.

2. The simple LRU-based cache replacement policy used
in LLC does not consider how a query can really ben-
efit from the cache but only considers how to satisfy a
query’s cache capacity demand.

3. A query execution process has its private data struc-
tures that need to be frequently accessed. However,
such data structures can be replaced by one-time ac-
cessed data structures (weak locality), or by other sim-
ilar data structures due to limited cache capacity.

In order to well understand the problem, we first show the
diverse locality strengths of DBMS queries, then we discuss
the drawback of LRU-based cache replacement in the LLC.

2.1 Diverse Cache Localities of Warehouse-style
Database Queries

In this section, we use TPC-H queries (1GB data set) as
examples of warehouse-style queries to demonstrate the exis-
tence of different locality strengths across various query ex-
ecutions. Our experimental system is a DELL PowerEdge
1900 server, which has two Intel Core2Quad Xeon X5355
2.66GHz CPUs, 16GB FB-DIMM memory, and five 146GB
15,000 RPM SCSI disks. Each Xeon processor has four cores,
and every two cores share a 4MB L2 cache (the LLC). We

Figure 2: The performance of TPC-H queries when
shrinking the L2 cache size.

use RedHat Enterprise Linux Server 5 with the Linux ker-
nel 2.6.20 and EXT3 file system. The DBMS used in our
experiments is the PostgreSQL 8.3.0.

In order to examine how the cache size affects query ex-
ecution performance, we use MCC-DB’s cache partitioning
mechanism (more details in Section 6) to alter the available
L2 cache space allocation for each query execution and ex-
amine the changes of its performance correspondingly. In our
experiments, the allocated L2 cache size is varied from 4MB
to 512KB in the descending order. We measured the perfor-
mance by two metrics, the L2 cache miss rate and the Cycles
Per Instruction (CPI), 3 as shown in Figure 2. The figure
does not show the queries with too short execution times and
Query 9, which has a CPI of 9.66 to 11.83 and a L2 miss rate
of 38.8% to 49.3%.

As shown in Figures 2 (a) and (b), we can find that there
is a strong correlation between the CPI (execution time) of
a query execution and the corresponding L2 cache miss rate.
This indicates that the L2 cache plays a key role in determin-
ing the query execution performance. We can also see that
different query executions show diverse behaviors when we
change the available cache size. We can generally classify the
queries into two groups:

(1) Cache-sensitive queries (Q5, Q8, and Q9) – their
execution times (CPI) are significantly affected by the size
of the allocated L2 cache space. The three queries are all
dominated by multi-way hash joins.

(2) Cache-insensitive queries (Q1, Q18, Q20, and Q21)
– their execution times do not change when we reduce the
cache space. Among them, Q1 is dominated by a sequential
table scan, Q18 is dominated by hash joins, and Q20 and Q21
are dominated by nested sub-query executions.

In essence, cache sensitivity of a query is determined by its
locality strength. Depending on the data access patterns of
operators for evaluating these queries, the queries have the
following three types of locality strengths:

(1) Strong locality – a query has a frequently-reused data
structure whose size is very small compared to the cache size.
Common query types are hash aggregation on a sequential
table scan (e.g. Q1) and hash join with small hash tables (e.g.
Q18). A strong-locality query is cache insensitive as long as
the cache space allocated to it can hold its frequently-reused
data structure. It has the least performance impact on its
co-runners, but it can be affected by the co-runners.

(2) Moderate locality – a query has a frequently-reused

3We use the perfmon tool to examine hardware counters
(available at: http://perfmon2.sourceforge.net/).

Some queries are more sensitive to cache sizes than others.

cache sensitive: hash joins

cache insensitive: index nested loops joins; hash joins with very

small or very large hash table
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Locality Strength

This behavior is related to the locality strength of execution plans:

Strong Locality

small data structure; reused very frequently

e.g., small hash table

Moderate Locality

frequently reused data structure; data structure ≈ cache size

e.g., moderate-sized hash table

Weak Locality

data not reused frequently or data structure � cache size

e.g., large hash table; index lookups
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Execution Plan Characteristics

Locality effects how caches are used:

strong moderate weak

amount of cache used

cache pollution

small large large

amount of cache needed small large small

Plans with weak locality have most severe impact on co-running queries.

Impact of co-runner on query:

strong moderate weak

strong low moderate high

moderate moderate high high

weak low low low
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Experiments: Locality Strength

4.2.1 Experiments
In order to understand locality strengths and related cache

conflicts of hash join and index join, we use SSB-based syn-
thetic queries to characterize them. These queries involve
only a 2-way join and have no GROUP BY. They have the
following forms:

select sum(LO REVENUE) from PART, LINEORDER
where P PARTKEY = LO PARTKEY
and ((P CATEGORY = ?) or (P CATEGORY = ?) or ...)

We select these queries because a very common pattern
we can see in SSB queries is a join between the PART ta-
ble and the LINEORDER table and then a sum function on
the LO REVENUE column. The selection condition on the
PART table is the logical disjunction of multiple expressions
on the P CATEGORY column. Each expression is a compar-
ison between the column and a constant value, for example
P CATEGORY =′ MGFR#11′. By statistics, this column
has 25 unique values, and each value is corresponding to a
similar number of tuples. Therefore, each expression has an
approximate selectivity of 4%. According to the number of
expressions, we name these queries as PLQ1, ..., and PLQ25.

When using hash join to execute each query, the hash table
is built on the tuples of the PART table. In this experiment,
we use a 2GB and a 4GB SSB data set. For the scale of 2GB,
the hash table size for a single expression is about 392KB. By
increasing the number of expressions in the disjunction clause
from 1 to 25, the hash table size can increase from 392KB to
9.28MB. For the scale of 4GB, the size can further increase
to 18.6MB. When using index join to execute each query, the
PART table is the outer relation that drives index scans on
the LINEORDER table. In this experiment, we examine two
index scan methods: the traditional B+-tree index scan and
the bitmap index scan.

We examine three combinations for the queries: (1) co-
running two hash joins (hash/hash), (2) co-running two index
joins (index/index), and (3) co-running a hash join and an
index join (hash/index). For hash/hash and index/index, we
run two instances of the same query. For hash/index, we first
select query PLQ25, which has the longest execution times for
both hash join and index join, as a common co-runner. Then
for each target query under examination, we run it together
with query PLQ25. In this way, we can ensure that the target
query would not finish earlier than query PLQ25, and the
target query is constantly under the pressure of query PLQ25

during the execution.
We use the execution time of running a target query alone

as the baseline case. Then we run two queries using the afore-
said three combinations to measure the performance degrada-
tions, relative to the baseline cases. Figure 4 shows the results
(we report representative queries considering the graph size).
In this figure, the X-axis values are the hash table sizes of hash
joins for the queries, in the ascending order. For brevity, we
merge experimental results for two data-set configurations in
the same figure. In particular, the queries with hash tables no
larger than 8.9MB are from the 2GB data-set configuration,
and the rest queries are from the 4GB data-set configura-
tion. The Y-axis is the performance degradation relative to
the baseline cases. We made observations as follows. (1)
An index join, using index scan or bitmap index scan, only
has small and stable performance degradations, no matter
whether it co-runs with a hash join or an index join. (2) An
index join can affect its hash join co-runner with a hash ta-
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Figure 4: Performance degradations when co-running
hash join and index join.

ble smaller than 12.3MB more significantly than a hash join.
(3) When the hash table size is no larger than 1.1MB, two
hash joins have slight interference with each other. (4) When
the hash table size is between 1.1MB and 12.3MB, the perfor-
mance degradations of hash joins caused by a co-running hash
join are high (>10%). Even higher performance degradations
(over 50%) can be found when the co-runner is an index join.
(5) When the hash table sizes are larger than 12.3MB, the
performance degradations of hash joins are similar to that of
index joins.

4.2.2 Identifying Operator Locality Strengths
Our experiments provide us with a basis to distinguish lo-

cality strengths of the two operators. First, according to our
analysis, index joins have weak localities. Our results confirm
the observations in paper [33] which shows that index joins
with B+-trees or even cache-conscious CSB+-trees [27] suffer
from significant cache thrashing and miss penalty. Second,
the locality strengths of hash joins are dependent on their
hash table sizes (S) and cache sizes (C). Motivated by the
test results, we adopt the following rules to quantitatively
identify the locality strength of a hash join, and classify hash
joins into three categories:

1. If S < C
3

(1.33MB), the hash join has strong locality.

2. If C
3
6 S < 3C, the hash join has moderate locality.

3. If S > 3C (12MB), the hash join has weak locality.

Although intuitively two co-running hash joins both with a
hash table smaller than C

2
should not cause cache contention,

our experiment shows that their performance degradations
are more than 20%. This is because, in practice, other compo-
nents in the database may consume a small amount of cache
as well. Therefore, we add a small slack and use C

3
and 3C

as boundaries to identify the locality strength of a hash join.
Our experiments show that this setting performs pleasantly
well in practice.

Table 1 summarizes performance degradations due to cache
conflicts. There are mostly two kinds of cache conflict de-
grading performance: (1) capacity contention: two moderate-
locality hash joins suffer cache conflict misses due to lim-
ited cache space. (2) cache pollution: an index join or a
weak-locality hash join pollutes the LLC so that a strong-
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Locality-Aware Scheduling

An optimizer could use knowledge about localities to schedule queries.

Estimate locality during query analysis.

Index nested loops join → weak locality

Hash join:

hash table� cache size → strong locality

hash table ≈ cache size → moderate locality

hash table� cache size → weak locality

Co-schedule queries to minimize (the impact of) cache pollution.

� Which queries should be co-scheduled, which ones not?

Only run weak-locality queries next to weak-locality queries.

→ They cause high pollution, but are not affected by pollution.

Try to co-schedule queries with small hash tables.
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Experiments: Locality-Aware Scheduling

PostgreSQL; 4 queries (different p_categorys); for each query: 2× hash

join plan, 2× INLJ plan; impact reported for hash joins:
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Cache Pollution

Weak-locality plans cause cache pollution, because they use much cache

space even though they do not strictly need it.

By partitioning the cache we could reduce pollution with little impact on

the weak-locality plan.

moderate-locality plan weak-locality plan

shared cache

But:

Cache allocation controlled by hardware.
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Cache Organization

Remember how caches are organized:

The physical address of a memory block determines the cache set

into which it could be loaded.

byte address

block address

tag set index offset

Thus,

We can influence hardware behavior by the choice of physical

memory allocation.
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Page Coloring

The address↔ cache set relationship inspired the idea of page colors.

Each memory page is assigned a color.5

Pages that map to the same cache sets get the same color.

cache set

memory page

cache

memory

�How many colors are there in a typical system?

5Memory is organized in pages. A typical page size is 4 kB.
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Page Coloring

By using memory only of certain colors, we can effectively restrict

the cache region that a query plan uses.

Note that

Applications (usually) have no control over physical memory.

Memory allocation and virtual↔ physical mapping are handled by

the operating system.

We need OS support to achieve our desired cache partitioning.
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MCC-DB: Kernel-Assisted Cache Sharing

MCC-DB (“Minimizing Cache Conflicts”):

Modified Linux 2.6.20 kernel

Support for 32 page colors (4 MB L2 Cache: 128 kB per color)

Color specification file for each process (may be modified by

application at any time)

Modified instance of PostgreSQL

Four colors for regular buffer pool

� Implications on buffer pool size (16 GB main memory)?

For strong- and moderate-locality queries, allocate colors as

needed (i.e., as estimated by query optimizer)
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Experiments

Moderate-locality hash join and weak-locality co-runner (INLJ):

0 %

10 %

20 %

30 %

40 %

50 %

32 24 16 8 4

weak locality (INLJ)

moderate locality (HJ)

single-threaded execution

single-threaded execution

L
2

C
a

ch
e

M
is

s
R

a
te

Colors to Weak-Locality Plan

S
o
u
rc
e
:
L
e
e
e
t
a
l.
V
L
D
B
2
0
0
9
.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 190



Experiments

Moderate-locality hash join and weak-locality co-runner (INLJ):
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Experiments: MCC-DB

PostgreSQL; 4 queries (different p_categorys); for each query: 2× hash

join plan, 2× INLJ plan; impact reported for hash joins:
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Highly Concurrent Workloads

Databases are often faced with highly concurrent workloads.

Good news:

Exploit parallelism offered by hardware (increasing number of cores).

Bad news:

Increases relevance of synchronization mechanisms.

Two levels of synchronization in databases:

Synchronize on User Data

to guarantee transaction semantics; database terminology: locks

Synchronize on Database-Internal Data Structures

short-duration locks; called latches in databases

We’ll now look at the latter, even when we say “locks.”
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Lock (Latch) Implementation

There are two strategies to implement locking:

Blocking (operating system service)

De-schedule waiting thread until lock becomes free.

Cost: two context switches (one to sleep, one to wake up)

→ ≈ 12–20µsec

Spinning (can be done in user space)

Waiting thread repeatedly polls lock until it becomes free.

Cost: two cache miss penalties (if implemented well)

→ ≈ 150 nsec

Thread burns CPU cycles while spinning.
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Implementation of Spinlocks

� Implementation of a spinlock?
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Thread Synchronization

Blocking:

thread 1

thread 2

thread working lock held

de-schedule wake-up

time

Spinning:

thread 1

thread 2

thread working lock held

thread spinning short delay

time
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Experiments: Locking Performance

Sun Niagara II (64 hardware contexts):

level off but remain steady as load continues to increase. Instead,
as load increases, blocking synchronization overwhelms the OS
scheduler, causing poor performance after 32 threads. Spinning
fares better at first, but as load crosses 100% its performance also
drops off drastically due to priority inversions. 

Nearly all of the challenges which arise with either spinning or
blocking are due to scheduling concerns. Spinning gives optimal
performance under light load (when no scheduling is needed), but
performs poorly under high load because preempted lock holders
trigger priority inversions. Similarly, blocking synchronization
performs badly because it potentially causes a context switch with
every lock handoff. Frequent context switching leads to scheduling
bottlenecks and adds significant overhead to the critical path. Fine-
grained synchronization aggravates the problem because it favors
frequent, short critical sections — much shorter than a context
switch — over longer and more coarse-grained ones. 

 We argue that the solution to the spinning-blocking trade-off
lies not with a more effective hybrid scheme, but in decoupling
load control from contention management. Effective contention
management uses spinning for fast lock hand-offs and does not
block in response to contention. Effective load control then pre-
vents spinning threads from causing overload while keeping load
low enough that lock holders are not preempted. We propose a
mechanism which  achieves both goals by notifying a random sub-
set of spinning threads to block in response to overload, waking
them when load drops or after a timeout of roughly one scheduler
time slice. Spinning threads are attractive targets because they can-
not make forward progress by definition, so removing them does
not hurt performance in the short term. Further, removing some
spinning threads from a loaded system ensures that lock holders
responsible for the wait are able to run, while leaving enough other
spinning threads to preserve fast lock handoffs. Finally, OS time
slicing operates normally in the absence of contention, though load
control remains active to disrupt any convoys which might arise. 

In summary, this paper makes three main contributions: 

1. We show that scheduler activity on the critical path of lock
handoffs underlies performance problems with the current
state-of-the-art in both spinning and blocking primitives.

2. We propose to decouple contention management from schedul-
ing, which moves the OS scheduler completely off the critical
path and allows applications to exploit the best properties of
spinning and blocking instead of merely trading them off. 

3. We design and implement a load control mechanism which
achieves the proposed decoupling without modifications to the
OS kernel or scheduler. For a variety of benchmarks, we
achieve peak performance for lightly loaded machines, while
retaining 85% of that peak even with 200% load (two runnable
threads per hardware context).

The rest of the paper is organized as follows. The next section
expands on the evolution of synchronization algorithms, and
related issues such as scheduling and preemption resistance.
Section 3 introduces our proposed load control mechanism and
discusses implementation issues. Sections 4-6 present and evaluate
the load control implementation. Section 7 compares load control
with alternative approaches, followed by conclusions in Section 8.

2. Managing Load and Contention

This section examines different approaches related to conflict reso-
lution for locking primitives (see Section 7 for a discussion of
alternatives to locking). We focus on locking because it is a gen-
eral-purpose and widely-utilized approach to synchronization.
Conflict resolution is necessary because threads which encounter
contention must wait for the lock to be released. As mentioned,
there are two fundamental contention management approaches —
spinning and blocking — as well as variants which extend and
combine the two to mitigate their various weaknesses. Figure 2
illustrates the space of challenges encountered in implementing
locking primitives and how solutions for these evolved; each
underlined text block is a challenge and connecting arrows are
existing solutions which attempt to overcome the challenge. 

Under blocking schemes (grouped toward the right of Figure
2), threads are descheduled in response to contention. Blocking has
the primary benefit of freeing the CPU until the waiting thread can
make progress again. As an added advantage, the scheduler can
cooperate with blocking synchronization, for example by desched-
uling threads which wait for a preempted lock. Blocking is an
expensive operation, however, because it requires two context
switches (with corresponding OS scheduling decisions), adding
10-15µs to the critical path of the system. A longer critical path
increases the likelihood that other threads will encounter conten-
tion and block, forming a vicious cycle of extremely slow lock
handoffs known as a convoy [5]. Because convoys are so damag-
ing to scalability, purely blocking contention management is only
used in uniprocessor systems where spinning leads to deadlock. 

Figure 1.  Weaknesses in state-of-the-art synchronization primi-
tives which use blocking and spinning.
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Spinning Under High Load

Under high load, spinning can cause problems:

thread 1

thread 2

time

More threads than hardware contexts.

Operating system preempts running task .

Working and spinning threads all appear busy to the OS.

Working thread likely had longest time share already

→ gets de-scheduled by OS.

Long delay before working thread gets re-scheduled.

By the time working thread gets re-scheduled (and can now make

progress), waiting thread likely gets de-scheduled, too.
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Spinning

In contrast to blocking, spinning or “busy waiting” schemes
(grouped on the left side of Figure 2) leave waiting threads on
CPU as they poll a memory location for changes that indicate a
lock handoff. Pure spinning is highly responsive (1-2 cache miss
delays per handoff) and avoids context switching or system calls
on the critical path. However, it also wastes CPU time other
threads might have been able to use. In addition, naive spinlock
implementations create heavy traffic in the memory system and
thus interfere with computation. Finally, the OS scheduler cannot
distinguish between threads which spin and those which make for-
ward progress, leading to situations where a lock holder gets pre-
empted, only to have the new thread waste its time slice spinning.

To show how severe the problem of preempted lock holders can
be, we run a database telecommunication benchmark (TM-1) on a
64-context machine (see Section 4 for details), using a state-of-the-
art spinlock. We instrument the code to differentiate between spin-
ning due to true contention and spinning due to priority inversion.
Figure 3 shows the resulting breakdown of work. We vary the
number of threads along the x-axis, and measure CPU time spent
doing useful work, spinning due to contention, and spinning due to
priority inversion. For fewer than 64 active threads, machine utili-
zation is less than 100% and contention is low. However, as soon
as utilization passes 100% priority inversions quickly dominate,
wasting up to 85% of CPU time. It is important to note that true
contention is not the concern: at peak performance, less than 10%
of CPU time is wasted spinning on contended locks, and that frac-
tion drops rapidly when the OS scheduler preempts lock holders.

2.1 Preemption-resistant Spinlocks
Queue-based spinlocks [22][24] and to a lesser extent, ticket
locks [29], provide excellent scalability because waiting threads
form a FIFO queue and each lock handoff targets a specific thread
(“MCS” in Figure 2). Queue-based locks also give each thread its
own memory location to spin on, eliminating unnecessary coher-
ence traffic. Further, the orderly handoff is an elegant solution for
the “thundering herd” problem, where all waiting threads race for
the lock at each release and cause both contention and memory
traffic. However, the same FIFO ordering makes such algorithms
especially vulnerable to preemptions because every thread in the
queue is effectively a lock holder: A thread preempted from the
queue will almost certainly become the lock holder before it wakes
again, and other threads cannot bypass it even if it was preempted
before acquiring the lock. As a result, load must remain strictly
below 100% in order to avoid convoys.

Time-published MCS locks [15] (“TP-MCS” in Figure 2) allow
lock holders to remove preempted threads from the lock queue
instead of passing the lock to them. By only handing the lock to
running threads, time-published locks eliminate the main weakness
of queue-based spinlocks while retaining their superior scalability.
However, even with TP-MCS locks, a few extra threads in a 32-
processor system add 50-100% to the execution time of some
SPLASH-2 benchmarks [15]. This behavior arises because time-
published locks only protect the queue, leaving lock holders vul-
nerable to preemption (the results in Figure 3 are based on TP-
MCS). Preempted lock holders impact all locks which do not
cooperate with the OS scheduler, and are the focus of this work.

2.2 Backoff and Spin-then-block Hybrids
Many approaches exist to ameliorate some of the weaknesses of
spinning and blocking. Backoff-based spinning provides another
solution to the “thundering herd” problem by limiting the number
of waiting threads which can respond simultaneously. Test-and-
test-and-set with exponential backoff [1] and spin-then-yield
variants [14][27], fall into this category, with the latter removing
threads from the CPU completely. Backoff schemes suffer from a
fundamental weakness, however, in that they impose competing
objectives: Long backoffs are best for reducing wasted resources,
but shorter backoffs give the fastest response to lock handoffs. The
best tuning for backoff-based schemes does not necessarily per-
form well (see next subsection), and tuning for the general case is
challenging because the hardware, OS, application, and the num-
ber of active threads all influence the optimal balance [6].

Hybrid spin-then-block schemes [6][27] improve on backoff by
allowing the lock holder to explicitly wake waiting threads. The
capability to both sleep and wake threads allows threads to block
without timeouts, without the risk of leaving a contended lock idle.
Where spin-then-yield schemes are essentially spinlocks which use
the scheduler as a form of backoff, hybrid spin-then-block schemes
use spinning to reduce context switching imposed by a blocking
primitive. However, as with backoff, hybrid schemes can cause
undesirable side effects on load (see below). Heavyweight OS
mutex implementations usually employ spin-then-block strategies,
including the Solaris adaptive mutex [23] and the Linux futex [12].

The Solaris adaptive mutex is an advanced spin-then-block
design that minimizes the need for context switching under low
and moderate contention, and which switches to blocking under
high contention. However, as presented in Figure 1, its behavior
still leaves much room for improvement. To identify the reason
behind the lock’s poor performance we modify the TM-1 bench-

Figure 3.  Spinning: priority inversion
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Figure 4.  Blocking: scheduler overload 
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The Right Tool for the Right Purpose

The properties of spinning and blocking suggest their use for different

purposes:

Spinning features quick lock hand-offs.

→ Use spinning to coordinate access to a shared data structure

(contention).

Blocking reduces system load (; scheduling).

→ Use blocking at longer time scales.

→ Block when system load increases to reduce scheduling

overhead.

Idea: Monitor system load (using a separate thread) and control

spinning/blocking behavior off the critical code path.
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Load Controller

The load controller periodically

Determines current load situation from the OS.

If system gets overloaded

“invite” threads to block with help of a sleep slot buffer.

Size of sleep slot buffer: number of threads that should block.

When load gets less

controller wakes up sleeping threads, which register in sleep

slot buffer before going to sleep.
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Lock Handling

A thread that wants to acquire a lock

Checks the regular spin lock.

If the lock is already taken, it tries to enter the sleep slot buffer and

blocks (otherwise it spins).

The load controller will wake up the thread in time.
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Controller Overhead

5. Evaluating Load Control

In the subsections which follow we analyze the behavior of load
control using the microbenchmarks and applications introduced in
Section 4. We begin by evaluating the potential of load control,
then show its impact on full applications, and discuss special cases.

5.1 Response to Control (“Bump test”)
In order for load control to be effective, the system must respond
quickly and predictably to changes in the control output. For
example, the load-triggered backoff scheme we discussed earlier
suffers from unpredictable system response as the sleep target
changes. In contrast, Figure 8 illustrates the effectiveness of our
proposed approach using a “bump test” which modifies the sleep
target of our microbenchmark in a fixed pattern over time. A con-
trollable system will respond to sudden changes in control with a
fast and proportional (predictable) change in its steady state behav-
ior. As the figure shows, every change in the sleep target results in
an immediate adjustment to the number of active threads. The first
thread responds within 30µs of a change and the system has stabi-
lized at the new thread count within 200µs. These results indicate
that the control mechanism is sound, assuming we can update the
sleep target accurately and often enough (see Section 5.3).

5.2 Effectiveness as Contention Levels Vary
Because load control can only remove spinning threads from the
system, the amount of contention in the system impacts the respon-
siveness of load control. Though low contention leads to little
spinning and a small pool of suitable victim threads, load control
remains effective for two reasons. First, normal OS scheduling
causes very few priority inversions in the absence of contention,
and load control has no need for victim threads. In the more com-
mon case of locks which are heavily used but not contended, pre-
empting a lock holder triggers priority inversion which produces
spinning threads for load control to work with. 

Figure 9 demonstrates this effect using a microbenchmark
where threads contend for a single global lock, with a fixed delay
between requests. High contention occurs for short requests on the
left of the x-axis and drops off moving toward the right. We con-
sider three cases, the base case where the machine is 95% loaded
(61 threads) as well as 150% loaded machine (96 threads) both
with and without load control. As we move right along the x-axis,
decreasing contention leads to two effects. First, the 95% loaded
system quickly reaches a state of low contention where throughput
is determined only by the number of active threads, not the amount
of time they spend holding the lock. Second, for the overloaded

case, less time spent in critical sections means a lower probability
of a preemption catching a lock holder, steadily reducing the per-
formance penalty due to priority inversions. With extremely high
contention (the 12µs case), load control is less effective because
lock holders are preempted too often. Even though load control
responds quickly by removing a spinning thread, the lock holder
must still be rescheduled, leading to roughly a 12µs delay on the
critical path. Overall, however, we see a significant benefit from
load control over a wide range of contention levels.

5.3 Sensitivity to Controller Update Rate
We have already seen that load control has response times in the
tens of µs. However, the control output must also be accurate and
timely or the system will respond faithfully to unhelpful load tar-
gets. For example, if load has dropped back to normal by the time
load control registers a load spike, too many threads will sleep and
causing underutilization of the machine. On the other hand, updat-
ing the load control target requires an expensive syscall, and doing
so too often hurts performance. Figure 10 illustrates the trade-off
between timeliness and overhead as we execute TM-1 and vary the
load control update interval along the x-axis. The y-axis gives sys-
tem throughput for 98%, 110%, and 150% load (63, 72, and 96
threads, respectively) with load control active. For extremely fre-
quent load measurements, high overhead slows all three cases. The
cost increases with load because the Solaris traverses every thread
in the process for each load measurement. In the middle region (3-
10ms), the benefits of load control outweigh the overheads, except
for the 98% load, which sees only the overhead. Finally, as the
interval increases past 10ms (the system tick interval), load control
makes poor decisions due to stale data. In order to maximize per-
formance for all load factors, we set the update interval to 7msec
for our experiments.

5.4 Graceful Degradation Under High Load
The most important measure of load control is its performance as
the number of threads in the system increases. Ideally, the extra
threads would not change the throughput of the system, through
per-thread throughput would necessarily drop. In practice, context
switching is not free and preemptions still occur occasionally, lead-
ing to a gradual drop in performance as load continues to rise. The
goal is therefore to allow performance to degrade gracefully,
depending on admission control to keep load from going so high as
to exhaust system resources. Figure 11 compares the performance
of Raytrace, TM-1, and TPC-C as load varies from near-idle to
overloaded (128 threads). Results for each application are clus-

Figure 9.  Impact of varying contention for 95% and 150% load.
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Performance Under Load

tered together, with throughput given for pthreads, TP-MCS, and
load control as different colors.

As the figure shows, with TP-MCS Raytrace outperforms the
standard pthread_mutex by a wide margin as long as load remains
under 100%, corroborating prior findings that heavyweight OS
mutex locks are ill-suited for high-performance computing. How-
ever, even with preemption resistance, the priority inversions
which afflict all spin-based primitives quickly destroy perfor-
mance. At the highest load shown in the figure the spinlock loses
more than 60% of its peak performance. In contrast, load control
makes spinlocks perform far better, with a slight advantage over
TP-MCS even for load below 100% as the OS will occasionally
preempt threads to allow other processes to run. The results for
TM-1 are similar to Raytrace, except single-thread performance is
unaffected by the higher cost of acquiring the OS mutex compared
to a lightweight spinlock. This occurs because the database engine
spends less time inside critical sections. However, TM-1 is still
highly sensitive to preemption, leading to the same poor perfor-
mance as spinning without load control to protect it.

For TPC-C, the high levels of application-level contention
reduce significantly the pressure on internal mutex locks because
threads block frequently on database locks instead. As a result, the
system becomes less sensitive to preemptions, and the TP-MCS
lock provides acceptable performance even near 150% load. For
the same reason, pthread_mutex does not become overloaded and
performs as well as load control. This is also to be expected,
because an adaptive mutex under low contention is just a spinlock
with the ability to deschedule spinning threads if the lock holder is
preempted — the same effect load control provides. We verified
that the behavior is due to contention for database locks by remov-
ing the badly behaved Delivery transaction from the workload mix.
Doing so boosted performance significantly, eliminated nearly all
variance in throughput, and made all synchronization approaches
behave similarly to TM-1.

Overall, load control allows spinning to perform well for a
wide variety of application behaviors and load levels. It imposes
virtually no overhead for light load while preserving performance
as load passes 100%. Even for the highest loads, load control
maintains 85-92% of peak performance, making spinning a viable
approach to contention management. In fact, load control is so
effective that replacing the preemption-resistant TP-MCS with a
standard MCS lock gives only a minor performance penalty, con-
firming that destructive convoys are no longer able to form.

5.5 Interference from Other Processes
In an unmanaged system where processes receive CPU time based
on the number of runnable threads they produce, load control
potentially puts its host process at a disadvantage compared to pro-
cesses which do not use it. The worry is that a load-controlled pro-
cess will detect an overload due to some other process and respond
by putting its own threads to sleep. In the worst case, a load-con-
trolled process would gradually disappear as more and more of its
threads sleep in response to outside pressure. In order to quantify
this risk we run two TM-1 benchmarks at the same time, forcing
them to compete for processor time. 

Figure 12 shows the outcome of the following scenario: Sup-
pose process “self” uses 100% of the machine’s processing power
and applies load control. When process “other” appears and com-
petes with “self” for CPU time, it should not be able to cause star-
vation, regardless of who uses load control. We vary the number of
runnable threads in “other” along the x-axis and plot the resulting
throughput for both processes. Each pair of bars shows the effect
when “other” does not or does use load control. As expected, com-
petition from “other” reduces the throughput “self” can achieve,
but it turns out that load control is relatively safe from adversaries.
When both processes use load control they share the system quite
effectively, with only a 10-15% drop in aggregate performance and
a reasonable balance of power. Even when “other” does not use
load control at all and creates excessive numbers of threads, “self”
still retains roughly 35% of its peak performance while “other”
suffers low performance due to priority inversions. 

The robustness of load control in the face of external processes
leads us to conclude that, for normal competition, load control
poses little risk to a process. However, if an adversary were to cre-
ate a process whose only purpose is to consume CPU time (with no
regard for its own performance), load control is somewhat vulnera-
ble. However, we note that this vulnerability exists independent of
load control, and has a straightforward solution. All operating sys-
tems provide mechanisms for isolating processes from each other,
including processor sets, usage caps, and priority schemes. Any
mechanism which ensures a process receives CPU time indepen-
dent of the number of threads other processes create will prevent
adversarial processes from pushing an important process off CPU,
whether the latter uses load control or not.

6. Discussion

The previous section demonstrates that load control provides an
effective way to manage heavy load without resorting to blocking

Figure 11.  Application performance as the thread count varies (64 threads is 100% load).

0

20

40

60

80

1 15 31 63 71 95 127 1 15 31 63 71 95 127 1 15 31 63 71 95 127

h d

pthread

TP-MCS

LC

Normalized Throughput

Raytrace TM-1 TPC-C

125

Source: Johnson et al. Decoupling Contention Management from Scheduling.

ASPLOS 2010.
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