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Part Il

Instruction Execution
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Pipelining in CPUs

Pipelining is a CPU implementation technique whereby multiple
instructions are overlapped in execution.

m Break CPU instructions into smaller units and pipeline.
m £.g., classical five-stage pipeline for RISC:

0 1 2 /3\ 4 5 clock —
instr.i | IF [ 1D H EX H/MEM\-{ WB |
instr. i + 1 | IF H D Hl EX H{MEM]H WB |
instr. i + 2 | IF K 1D H EX HMEMH wB |
paratlel
execution
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Pipelining in CPUs

Ideally, a k-stage pipeline improves performance by a factor of k.

m Slowest (sub-)instruction determines clock frequency.
m Ideally, break instructions into k equi-length parts.
m Issue one instruction per clock cycle (IPC = 1).

Example: Intel Pentium 4: 314 pipeline stages.
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The effectiveness of pipelining is hindered by hazards.

Structural Hazard

Different pipeline stages need same functional unit
(resource conflict; e.g., memory access < instruction fetch)
Data Hazard

Result of one instruction not ready before access by later
instruction.

Control Hazard

Arises from branches or other instructions that modify PC
(“data hazard on PC register”).

Hazards lead to pipeline stalls that decrease IPC.
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Structural Hazards

A structural hazard will occur if a CPU has only one memory access unit
and instruction fetch and memory access are scheduled in the same cycle.

0 1 2 3 4 5 clock —
instr.i | IF 4 1D | EX H{MEM}H wB |
instr. i +1 | F H b H EX HMEMH waB |
instr. i + 2 | IF H b H EX HMEM]S WB |
instr. i + 3 ot - 1B H B vt H] e |-
Resolution:

m Provision hardware accordingly (e.g., separate fetch units)

m Schedule instructions (at compile- or runtime)
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Structural Hazards

Structural hazards can also occur because functional units are not fully
pipelined.

m £.g., a (complex) floating point unit might not accept new data on
every clock cycle.

m Often a space/cost <+ performance trade-off.
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LD R1, 0(R2) m Instructions read R1 before it was

DSUB R4, R1, RS written by DADD (stage WB writes
AND  R6,R1,R7 register results).
OR R8, R1, R9

XOR R10, R1, R11 m Would cause incorrect execution result.

0 1 2 3
LD R1,0(R2) | IF 4 ID | EX H{MEME| wB |
i we
AND R6,R1,R7 EX [H{MEM]S wB |
OR R8,R1,R9 | F H B H EX H{MEMH wB |
XOR R10,R1,R11 | IF H D B EXx H{MEM}

4 5 clock —

DSUB R4,R1,R5
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Resolution:
m Forward result data from instruction to instruction.

m Could resolve hazard LD <+ AND on previous slide (forward R1
between cycles 3 and 4).
m Cannot resolve hazard LD <> DSUB on previous slide.

m Schedule instructions (at compile- or runtime).
m Cannot avoid all data hazards.

m Detecting data hazards can be hard, e.g., if they go through
memory.

SD R1, 0(R2)
LD R3,0(R4)
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Tight loops are a good candidate to improve instruction scheduling

for (i=1000; i>o0; i=i+1)
x[i] =x[i] +s;

1: L.D FO, 0(R1)
ADD.D F4, FO, F2
S.D F4, 0(R1)
DADDUI R1,R1, #-8
BNE R1,R2,1

naive code

1:

L.D FO0, 0(R1)
DADDUI R1,R1, #-8
ADD.D F4, FO, F2

stall
stall

S.D F4, 0(R1)
BNE R1,R2,1

re-schedule

source: Hennessy & Patterson, Chapter 2

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

L.D
1Ly ID)
L.D
L.D
ADD.D
ADD.D
ADD.D
ADD.D
S.D
S.D
DADDUI
S.D
S.D
BNE

FO, 0(R1)
F6, -8(R1)
F10, -16(R1)
F14, -24(R1)
F4,FO0, F2
F8, F6, F2
F12, F10, F2
F16, F14, F2
F4, 0(R1)
F8, -8(R1)
R1,R1, #-32
F12, 16 (R1)
F16, 8(R1)
R1,R2,1

loop unrolling
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Control Hazards

Control hazards are often more severe than are data hazards.

m Most simple implementation: flush pipeline, redo instr. fetch

0 1 2 3 4 5  clock —
branch instr. i | IF_H 1D |5 EX H{MEMH WB |

instr. i + 1 idle idle idle idle

target instr. | IF H D 4 EX HMEMH wB |
target instr. + 1 | IF H b H EX HMEM H wi

With increasing pipeline depths, the penalty gets worse.
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Control Hazards

A simple optimization is to only flush if the branch was taken.

m Penalty only occurs for taken branches.
m If the two outcomes have different (known) likeliness:
m Generate code such that a non-taken branch is more likely.

m Aborting a running instruction is harder when the branch outcome is
known late.
— Should not change exception behavior.

This scheme is called predicted-untaken.
— Likewise: predicted-taken (but often less effective)
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Branch Prediction

Modern CPUs try to predict the target of a branch and execute the
target code speculatively.

m Prediction must happen early (ID stage too late).

Thus: Branch Target Buffers (BTBs)
m Lookup Table: PC — (predicted target, taken?).
Lookup PC Predicted PC Taken?

m Consult Branch Target Buffer parallel to instruction fetch.
m If entry for current PC can be found: follow prediction.
m If not, create entry after branching.

m Inner workings of modern branch predictors are highly involved (and
typically kept secret).
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Selection Conditions

Selection queries are sensitive to branch prediction:

SELECT COUNT (*)
FROM lineitem
WHERE quantity < n

Or, written as C code:

for (unsigned int i=0; i<num_tuples; i++)
if (lineitem[i].quantity<n)
count++;
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Selection Conditions (Intel Q6700)
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Predication: Turn control flow into data flow.

for (unsigned int i=0; i<num_tuples; i++)
count += (lineitem[i] .quantity<n);

m This code does not use a branch any more.3
m The price we pay is a + operation for every iteration.

m Execution cost should now be independent of predicate selectivity.

Sexcept to implement the loop
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Predication (Intel Q6700)
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This was an example of software predication.

% How about this query?

SELECT quantity
FROM lineitem
WHERE quantity < n

Some CPUs also support hardware predication.

m £.g., Intel Itanium?2:
Execute both branches of an if-then-else and discard one result.
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Experiments (AMD AthlonMP / Intel Itanium?2)

int sel_It_int_col_int_val(int n, int* res, int* in, int V) {

for (int i=0, j=0; i<n; i++){ ‘

5L Itanium?2 branch —«—
/* branch version */

Itanium?2 predicated .. ...

8 AthlonMP branch --g-
if (srcli] < V) Dy AthlonMP predicated - x. -
} ) £ I R =
out [j++] = 1i; A
/* predicated version */ 60 % ><~;f—— XXX -X"»x;'x' 1
bool b = (src[i] < V); -x’ k=)
out[j] = 1i; 40

i += b; m'/ il
— o o—— o o —o—0—o—0—9
} ' 20

return j;

20 40 60 80 100
| | | |
query selectivity

/‘Boncz, Zukowski, Nes. MonetDB/X100: Hyper-Pipelining Query
Execution. CIDR 2005.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014




Two Cursors

The count +=. .. still causes a data hazard.
m This limits the CPUs possibilities to execute instructions in parallel.

Some tasks can be rewritten to use two cursors:

for (unsigned int i=0; i<num_tuples/2; i++) {
countl += (datalil < n);
count2 += (data[i +num_tuples /2] <n);

}

count =countl + count2;
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Experiments (Intel Q6700)

900 =
750 t ..' '..
= . .
5. 600 | .° ‘.
() ° °
g o. .a
+ 450 A ° °
g III':IIIIIIIllIIIIIIIIIIIIIIIIlllllllll:'ll
s} ° (]
8 B00 ¢4 ¢0 0000000000000 00000000000000000000
2
(5]
150 -
0 } } } }
0% 20% 40% 60 % 80 % 100 %

predicate selectivity

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014




Conjunctive Predicates

In general, we have to handle multiple predicates:

SELECT Ay, ..., A,
FROM R
WHERE p; AND po AND ... AND py

The standard C implementation uses && for the conjunction:

for (unsigned int i=0; i<num_tuples; i++)
if (p1 && po && ... && pg)

*
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Conjunctive Predicates

The && introduce even more branches. The use of && is equivalent to:

for (unsigned int i=0; i<num_tuples; i++)
if (p1)
if (p2)

if (pk)
An alternative is the use of the logical &:
for (unsigned int i=0; i<num_tuples; i++)

if (p1 & p2 & ... & px)

*
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Conjunctive Predicates

This allows us to express queries with conjunctive predicates without
branches.

for (unsigned int i=0; i<num_tuples; i++)
{

answer [j] =1i;

Jj+=(p1 & p2 & ... & pK);
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Experiments (Intel Pentium I11)
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Cost Model

A query compiler could use a cost model to select between variants.
p && q

When p is highly selective, this might amortize the double branch
misprediction risk.

p&q

Number of branches halved, but g is evaluated regardless of p's
outcome.

j=

Performs memory write in each iteration.

Notes:

m Sometimes, && is necessary to prevent null pointer dereferences: if
(p && p—>foo==42).

m Exact behavior is hardware-specific.
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Experiments (Sun UltraSparc Ili)
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Use Case: (De-)Compression

Compression can help overcome the 1/0 bottleneck of modern CPUs.
m disk < memory

®m memory <> cache (!)

m Column stores have high potential for compression. N Why?

But:
m (De-)compression has to be fast.
m 200-500 MB/s (LZRW1 and LZOP) won't help us much.
m Aim for multi-gigabyte per second decompression speeds.

m Maximum compression rate is not a goal.
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Lightweight Compression Schemes

MonetDB /X100 implements lightweight compression schemes:

PFOR (Patched Frame-of-Reference)
small integer values that are positive offsets from a base value; one
base value per (disk) block

PFOR-DELTA (PFOR on Deltas)
encode differences between subsequent items using PFOR

PDICT (Patched Dictionary Compression)
integer codes refer into an array for values (the dictionary)

All three compression schemes allow exceptions, values that are too far
from the base value or not in the dictionary.
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PFOR Compression

E.g., compress the digits of m using 3-bit PFOR compression.

header
4/1]s5]|1|2]6|5]3
LlL|L|3]2

Decompressed numbers: 31415926535897932

compressed data

} exceptions
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Decompression

During decompression, we have to consider all the exceptions:

for (i=3j=0; i<n; i++)
if (codel[i] != 1)
output[i] = DECODE (codel[il);
else
output [i] = exception[--j];

For PFOR, DECODE is a simple addition:

#define DECODE(a) ((a) + base_value)

@ The branch in the above code may bear a high misprediction risk.
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Misprediction Cost
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Source: M. Zukowski. Balancing Vectorized Query Execution with Bandwidth-Optimized
Storage. PhD Thesis, University of Amsterdam. Sept. 2009
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Avoiding the Misprediction Cost

Like with predication, we can avoid the high misprediction cost if we're
willing to invest some unnecessary work.
Run decompression in two phases:
Decompress all regular fields, but don't care about exceptions.
Work in all the exceptions and patch the result.

/* ignore exceptions during decompression */
for (i=0; i<n; i++)

output [i] = DECODE (code[i]);
/* patch the result */

foreach exception
patch corresponding output item;
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Patching the Output

Q We don’t want to use a branch to find all exception targets!

Thus: interpret values in “exception holes” as linked list:

header 311
dali 51 sFATEI5 I 0| | compressed data
"1\"?"3"3'"2""'

‘ 9 | 9 | 8(| 9 }exceptions

— Can now traverse exception holes and patch in exception values
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Patching the Output

The resulting decompression routine is branch-free:

/* ignore exceptions during decompression */
for (i=0; i<mn; i++)
output [i] =DECODE (code[i]);
/* patch the result (traverse linked list) */
3=0;
for (cur=first_exception; cur<n; cur=next) {
next =cur +code[cur] +1;
output [cur] =exception[--j];

— See slide 120 for experimental data on two-loop decompression.
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X 3-bit-PFOR-compressed representation of the digits of e?

e = 2.718281 828459 045235360287 471352662497 757247093
699959574966 967 627 724076 630353547594 571382178525 ..

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014



PFOR Compression Speed
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Improving IPC

m The actual execution of instructions is handled in individual
functional units

m e.g., load/store unit, ALU, floating point unit.
m Often, some units are replicated.

m Chance to execute multiple instructions at the same time.

m Intel's Nehalem, for instance, can process up to 4 instructions at
the same time.

— |IPC can be as high as 4.

— Such CPUs are called superscalar CPUs.
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Dynamic Scheduling

Higher IPCs are achieved with help of dynamic scheduling.

/

instr. stream ———1—1——]

\%%\ ALU Units |

reservation stations

—»‘ Memory Units ‘

| FPUnit |

m Instructions are dispatched to reservation stations.
m They are executed as soon as all hazards are cleared.

m Register renaming helps to reduce data hazards.

This technique is also known as Tomasulo’s algorithm.
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Example: Dynamic Scheduling in MIPS

From instruction unit

Instruction FP registers l
queue
Load-store
operations |
Y ) ) Operand
Address unit Floatl?'g-pomt buses
Store buffers operations
_§ Load buffers
Operation bus
| 3 ) 2
2 Reservation |—|—|—. 1
11 stations
Data Address l
Memory unit . FP adders EP multieliers .
Common data bus (CDB)

Jens Teubner - Processing on Modern Hardware - Summer 2014

Source: Hennessy & Patterson. Computer Architecture: A Quantitative Approach




Instruction-Level Parallelism

Usually, not all units can be kept busy with a single instruction stream:

/.

instr. streamc—

ST
“|euonouny —

time

Reasons:
m data hazards, cache miss stalls, . ..
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Thread-Level Parallelism

Idea: Use the spare slots for an independent instruction stream.

instr. stream 1
instr. stream 2
_—

time

suun
T jeuonouny —

This technique is called simultaneous multithreading.*
Surprisingly few changes are required to implement it.
m Tomasulo's algorithm requires virtual registers anyway.
m Need separate fetch units for both streams.

“*Intel uses the term “hyperthreading.”
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Resource Sharing

Threads share most of their resources:
m caches (all levels),

m branch prediction functionality (to some extent).

This may have negative effects. ..

m threads that pollute each other’'s caches

... but also positive effects.
m threads that cooperatively use the cache?
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Use Cases

Tree-based indexes:

Hash-based indexes:

Both cases depend on hard-to-predict pointer chasing.
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Helper Threads

Idea:
m Next to the main processing thread run a helper thread.
m Purpose of the helper thread is to prefetch data.
m Helper thread works ahead of the main thread.

— [ helper thread

work-ahead set

| Cache |

| Main Memory |

m Main thread populates work-ahead set with pointers to prefetch.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014



Main Thread

Consider the traversal of a tree-structured index:

1 foreach input item do

2 read root node, prefetch level 1 ;
3 read node on tree level 1, prefetch level 2 ;
4 read node on tree level 2, prefetch level 3 ;

Helper thread will not have enough time to prefetch.
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Main Thread

Thus: Process input in groups.

1 foreach group g of input items do
foreach item in g do
|_ read root node, prefetch level 1 ;

foreach item in g do
|_ read node on tree level 1, prefetch level 2 ;

foreach item in g do
|_ read node on tree level 2, prefetch level 3 ;

Data may now have arrived in caches by the time we reach next level.
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Helper Thread

Helper thread accesses addresses listed in work-ahead set, e.g.,
temp += *((int *) p);

m Purpose: load data into caches
S Why not use prefetchxx assembly instructions?
m Only read data; do not affect semantics of main thread.
m Use a ring buffer for work-ahead set.
m Spin-lock if helper thread is too fast.

S Which thread is going to be the faster one?
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Experiments (Tree-Structured Index)
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" Zhou, Cieslewicz, Ross, Shah. Improving Database Performance on
Simultaneous Multithreading Processors. VIL.DB 2005.
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There's a high chance that both threads access the same cache line at
the same time.

m Must ensure in-order processing.

m CPU will raise a Memory Order Machine Clear (MOMC) event
when it detects parallel access.

— Pipelines flushed to guarantee in-order processing.
— MOMC events cause a high penalty.

m Effect is worst when the helper thread spins to wait for new data.
Thus:

m Let helper thread work backward.
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Experiments (Tree-Structured Index)
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Cache Miss Distribution
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