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Part III

Instruction Execution
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Pipelining in CPUs

Pipelining is a CPU implementation technique whereby multiple

instructions are overlapped in execution.

Break CPU instructions into smaller units and pipeline.

E.g., classical five-stage pipeline for RISC:

0 1 2 3 4 5 clock

IF ID EX MEM WBinstr. i

IF ID EX MEM WBinstr. i + 1

IF ID EX MEM WBinstr. i + 2

parallel
execution
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Pipelining in CPUs

Ideally, a k-stage pipeline improves performance by a factor of k .

Slowest (sub-)instruction determines clock frequency.

Ideally, break instructions into k equi-length parts.

Issue one instruction per clock cycle (IPC = 1).

Example: Intel Pentium 4: 31+ pipeline stages.
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Hazards

The effectiveness of pipelining is hindered by hazards.

Structural Hazard

Different pipeline stages need same functional unit

(resource conflict; e.g., memory access↔ instruction fetch)

Data Hazard

Result of one instruction not ready before access by later

instruction.

Control Hazard

Arises from branches or other instructions that modify PC

(“data hazard on PC register”).

Hazards lead to pipeline stalls that decrease IPC.
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Structural Hazards

A structural hazard will occur if a CPU has only one memory access unit

and instruction fetch and memory access are scheduled in the same cycle.

0 1 2 3 4 5 clock

IF ID EX MEM WBinstr. i

IF ID EX MEM WBinstr. i + 1

IF ID EX MEM WBinstr. i + 2

IF ID EX MEM WBinstr. i + 3 stall IF ID EX MEM WBinstr. i + 3

Resolution:

Provision hardware accordingly (e.g., separate fetch units)

Schedule instructions (at compile- or runtime)
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Structural Hazards

Structural hazards can also occur because functional units are not fully

pipelined.

E.g., a (complex) floating point unit might not accept new data on

every clock cycle.

Often a space/cost ↔ performance trade-off.
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Data Hazards

LD R1, 0(R2)

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Instructions read R1 before it was

written by DADD (stage WB writes

register results).

Would cause incorrect execution result.

0 1 2 3 4 5 clock

IF ID EX MEM WBLD R1,0(R2)

IF ID EX MEM WBDSUB R4,R1,R5

IF ID EX MEM WBAND R6,R1,R7

IF ID EX MEM WBOR R8,R1,R9

IF ID EX MEM WBXOR R10,R1,R11
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Data Hazards

Resolution:

Forward result data from instruction to instruction.

Could resolve hazard LD↔ AND on previous slide (forward R1

between cycles 3 and 4).

Cannot resolve hazard LD↔ DSUB on previous slide.

Schedule instructions (at compile- or runtime).

Cannot avoid all data hazards.

Detecting data hazards can be hard, e.g., if they go through

memory.

SD R1, 0(R2)

LD R3, 0(R4)
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Tight loops are a good candidate to improve instruction scheduling.

for (i = 1000; i > o; i = i + 1)

x[i] = x[i] + s;

l: L.D F0, 0(R1)

ADD.D F4, F0, F2

S.D F4, 0(R1)

DADDUI R1, R1, #-8

BNE R1, R2, l

l: L.D F0, 0(R1)

DADDUI R1, R1, #-8

ADD.D F4, F0, F2

stall

stall

S.D F4, 0(R1)

BNE R1, R2, l

l: L.D F0, 0(R1)

L.D F6, -8(R1)

L.D F10, -16(R1)

L.D F14, -24(R1)

ADD.D F4, F0, F2

ADD.D F8, F6, F2

ADD.D F12, F10, F2

ADD.D F16, F14, F2

S.D F4, 0(R1)

S.D F8, -8(R1)

DADDUI R1, R1, #-32

S.D F12, 16(R1)

S.D F16, 8(R1)

BNE R1, R2, l

näıve code re-schedule loop unrolling

source: Hennessy&Patterson, Chapter 2
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Control Hazards

Control hazards are often more severe than are data hazards.

Most simple implementation: flush pipeline, redo instr. fetch

0 1 2 3 4 5 clock

IF ID EX MEM WBbranch instr. i

IF idle idle idle idleinstr. i + 1

IF ID EX MEM WBtarget instr.

IF ID EX MEM WBtarget instr.+ 1

With increasing pipeline depths, the penalty gets worse.
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Control Hazards

A simple optimization is to only flush if the branch was taken.

Penalty only occurs for taken branches.

If the two outcomes have different (known) likeliness:

Generate code such that a non-taken branch is more likely.

Aborting a running instruction is harder when the branch outcome is

known late.

→ Should not change exception behavior.

This scheme is called predicted-untaken.

→ Likewise: predicted-taken (but often less effective)
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Branch Prediction

Modern CPUs try to predict the target of a branch and execute the

target code speculatively.

Prediction must happen early (ID stage too late).

Thus: Branch Target Buffers (BTBs)

Lookup Table: PC → 〈predicted target, taken?〉.

Lookup PC Predicted PC Taken?
...

...
...

Consult Branch Target Buffer parallel to instruction fetch.

If entry for current PC can be found: follow prediction.

If not, create entry after branching.

Inner workings of modern branch predictors are highly involved (and

typically kept secret).
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Selection Conditions

Selection queries are sensitive to branch prediction:

SELECT COUNT(*)

FROM lineitem

WHERE quantity < n

Or, written as C code:

for (unsigned int i = 0; i < num_tuples; i++)

if (lineitem[i].quantity < n)

count++;
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Selection Conditions (Intel Q6700)
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Predication

Predication: Turn control flow into data flow.

for (unsigned int i = 0; i < num_tuples; i++)

count += (lineitem[i].quantity < n);

This code does not use a branch any more.3

The price we pay is a + operation for every iteration.

Execution cost should now be independent of predicate selectivity.

3except to implement the loop
c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 104



Predication (Intel Q6700)
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Predication

This was an example of software predication.

�How about this query?

SELECT quantity

FROM lineitem

WHERE quantity < n

Some CPUs also support hardware predication.

E.g., Intel Itanium2:

Execute both branches of an if-then-else and discard one result.
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Experiments (AMD AthlonMP / Intel Itanium2)

/* branch version */
if (src[i] < V)

out[j++] = i;

/* predicated version */
bool b = (src[i] < V);

j += b;

out[j] = i;

return j;
}

}
query selectivity

int sel_lt_int_col_int_val(int n, int* res, int* in, int V) {

m
se

c.

for(int i=0,j=0; i<n; i++){
 100
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Figure 2: Itanium Hardware Predication Eliminates
Branch Mispredictions

Therefore, compiler optimizations have become crit-
ical to achieving good CPU utilization. The most
important technique is loop pipelining, in which an
operation consisting of multiple dependent operations
F(), G() on all n independent elements of an array A

is transformed from:
F(A[0]),G(A[0]), F(A[1]),G(A[1]),.. F(A[n]),G(A[n])

into:
F(A[0]),F(A[1]),F(A[2]), G(A[0]),G(A[1]),G(A[2]), F(A[3]),..

Supposing the pipeline dependency latency of F()

is 2 cycles, when G(A[0]) is taken into execution, the
result of F(A[0]) has just become available.

In the case of the Itanium2 processor, the impor-
tance of the compiler is even stronger, as it is the
compiler who has to find instructions that can go into
different pipelines (other CPUs do that at run-time,
using out-of-order execution). As the Itanium2 chip
does not need any complex logic dedicated to find-
ing out-of-order execution opportunities, it can contain
more pipelines that do real work. The Itanium2 also
has a feature called branch predication for eliminating
branch mispredictions, by allowing to execute both the
THEN and ELSE blocks in parallel and discard one
of the results as soon as the result of the condition
becomes known. It is also the task of the compiler to
detect opportunities for branch predication.

Figure 2 shows a micro-benchmark of the selection
query SELECT oid FROM table WHERE col < X, where X

is uniformly and randomly distributed over [0:100]

and we vary the selectivity X between 0 and 100. Nor-
mal CPUs like the AthlonMP show worst-case behav-
ior around 50%, due to a branch mispredictions. As
suggested in [17], by rewriting the code cleverly, we can
transform the branch into a boolean calculation (the
“predicated” variant). Performance of this rewritten
variant is independent of the selectivity, but incurs a
higher average cost. Interestingly, the “branch” vari-
ant on Itanium2 is highly efficient and independent of
selectivity as well, because the compiler transforms the
branch into hardware-predicated code.

Finally, we should mention the importance of on-
chip caches to CPU throughput. About 30% of all

instructions executed by a CPU are memory loads
and stores, that access data on DRAM chips, located
inches away from the CPU on a motherboard. This
imposes a physical lower bound on memory latency of
around 50 ns. This (ideal) minimum latency of 50ns
already translates into 180 wait cycles for a 3.6GHz
CPU. Thus, only if the overwhelming majority of the
memory accessed by a program can be found in an on-
chip cache, a modern CPU has a chance to operate at
its maximum throughput. Recent database research
has shown that DBMS performance is strongly im-
paired by memory access cost (“cache misses”) [3], and
can significantly improve if cache-conscious data struc-
tures are used, such as cache-aligned B-trees [15, 7] or
column-wise data layouts such as PAX [2] and DSM [8]
(as in MonetDB). Also, query processing algorithms
that restrict their random memory access patterns to
regions that fit a CPU cache, such as radix-partitioned
hash-join [18, 11], strongly improve performance.

All in all, CPUs have become highly complex de-
vices, where the instruction throughput of a processor
can vary by orders of magnitude (!) depending on
the cache hit-ratio of the memory loads and stores,
the amount of branches and whether they can be pre-
dicted/predicated, as well as the amount of indepen-
dent instructions a compiler and the CPU can detect
on average. It has been shown that query execution in
commercial DBMS systems get an IPC of only 0.7 [6],
thus executing less than one instruction per cycle. In
contrast, scientific computation (e.g. matrix multipli-
cation) or multimedia processing does extract average
IPCs of up to 2 out of modern CPUs. We argue that
database systems do not need to perform so badly,
especially not on large-scale analysis tasks, where mil-
lions of tuples need to be examined and expressions
to be calculated. This abundance of work contains
plenty of independence that should be able to fill all
the pipelines a CPU can offer. Hence, our quest is to
adapt database architecture to expose this to the com-
piler and CPU where possible, and thus significantly
improve query processing throughput.

SELECT l_returnflag, l_linestatus,
sum(l_quantity) AS sum_qty,
sum(l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - l_discount))

AS sum_disc_price,
sum(l_extendedprice * (1 - l_discount) *

(1 + l_tax)) AS sum_charge,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= date ’1998-09-02’
GROUP BY l_returnflag, l_linestatus

Figure 3: TPC-H Query 1

↗Boncz, Zukowski, Nes. MonetDB/X100: Hyper-Pipelining Query

Execution. CIDR 2005.
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Two Cursors

The count += . . . still causes a data hazard.

This limits the CPUs possibilities to execute instructions in parallel.

Some tasks can be rewritten to use two cursors:

for (unsigned int i = 0; i < num_tuples / 2; i++) {

count1 += (data[i] < n);

count2 += (data[i + num_tuples / 2] < n);

}

count = count1 + count2;
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Experiments (Intel Q6700)
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Conjunctive Predicates

In general, we have to handle multiple predicates:

SELECT A1, . . . , An
FROM R

WHERE p1 AND p2 AND . . . AND pk

The standard C implementation uses && for the conjunction:

for (unsigned int i = 0; i < num_tuples; i++)

if (p1 && p2 && . . . && pk)

...;
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Conjunctive Predicates

The && introduce even more branches. The use of && is equivalent to:

for (unsigned int i = 0; i < num_tuples; i++)

if (p1)

if (p2)
...

if (pk)

...;

An alternative is the use of the logical &:

for (unsigned int i = 0; i < num_tuples; i++)

if (p1 & p2 & . . . & pk)

...;
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Conjunctive Predicates

This allows us to express queries with conjunctive predicates without

branches.

for (unsigned int i = 0; i < num_tuples; i++)

{

answer[j] = i;

j += (p1 & p2 & . . . & pk);

}
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Experiments (Intel Pentium III)
Selection Conditions in Main Memory • 139

Fig. 1. Three implementations: Pentium.

penalty is higher on that architecture [Yung 1996]. The time per record is shown
in microseconds on the vertical axis, measured against the probability that a
test succeeds. The probability is controlled by setting an appropriate threshold
for an element of the t array to be randomly set to 1. All functions in this graph
have the same probability.

Our preliminary analysis of the three implementations is borne out by this
graph. For low selectivities, the branching-and implementation does best by
avoiding work, and the one branch that is frequently taken can be well predicted
by the machine. For intermediate selectivities, the logical-and method does
best. However, when the combined selectivity gets close to 0.5, the performance
worsens. The no-branch algorithm is best for nonselective conditions; it does
more “work” but does not suffer from branch misprediction.

Each of the three implementations is best in some range, and the performance
differences are significant. On other ranges, each implementation is about twice
as bad as optimal. Thus, we will need to consider in more depth how to choose
the “right” implementation for a given set of query parameters.

Looking at the performance numbers, one might wonder why we care about
per-record processing times that are fractions of a microsecond. The reason we
care is that this cost is multiplied by the number of records, which may be in the
tens or hundreds of millions. When we don’t have an index, we have no choice
but to perform a full scan of the whole table. Even when we’re scanning fewer
records per query, the overall performance in queries-per-second is directly
impacted by these performance numbers. In a dynamic query environment, for
example, we might be aiming for video-rate screen refresh, and thus require
the completion of 30 queries per second for each user. See Section 7 for another
example.

From now on, when we show an implementation, we will omit the for loop,
just showing the code inside the loop.

4. OPTIMIZING INNER LOOP BRANCHES FOR CONJUNCTIONS

Using standard database terminology, we will refer to a particular implemen-
tation of a query as a plan. We now formulate our optimization question:

Given a number k, functions f1 through fk, and a selectivity estimate pm (m =
1, . . . , k) for each fm, find the plan that minimizes the expected computation
time.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

↗Ken Ross. Selection Conditions in Main Memory. TODS 2004.
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Cost Model

A query compiler could use a cost model to select between variants.

p && q

When p is highly selective, this might amortize the double branch

misprediction risk.

p & q

Number of branches halved, but q is evaluated regardless of p’s

outcome.

j += . . .

Performs memory write in each iteration.

Notes:

Sometimes, && is necessary to prevent null pointer dereferences: if

(p && p->foo == 42).

Exact behavior is hardware-specific.
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Experiments (Sun UltraSparc IIi)150 • Kenneth A. Ross

Fig. 2. Three implementations: Sun.

for each one if we can derive estimates for the function cost and selectivity
for the optimization algorithm. Since the loop code is small, we can probably
tolerate thousands of such queries with a small expansion in the executable
code size.

However, for ad-hoc queries we need to be able to allow the functions to be
specified at run-time. There are two complementary problems. First, executing
a function call (and potentially dereferencing a function pointer as well) may
be a significant performance overhead in a tight inner loop. Second, we don’t
know the selectivities and function costs until query time, and these statistics
are important for the selection of the appropriate inner-loop plan. There are
several potential solutions to this problem. We outline one below.

When responding to an ad-hoc query, we still may have time to perform the
optimization described above, compile a new version of the loop, with the ap-
propriate combination of &&s and &s, and link it into the running code. Systems
such as Tempo [Consel and Noel 1996; Noel et al. 1998] allow such run-time
compilation. Run-time code specialization of this sort would be beneficial only
if the optimization time plus the compilation time are smaller than the im-
provement in the running-time of the resulting plan. As we saw in Sections 4.4
and 4.5, the optimization time is relatively small. The code to be compiled is
also relatively small. For scans of large tables, such an approach may indeed
pay off.

Run-time code specialization is different from self-modifying code. With self-
modification, a program changes its own byte-code during its execution. While
such a technique might actually present the most efficient solution to our code
specialization problem, code modification is generally considered to be a bad
idea. Such code is not reentrant, sharable, able to reside in ROM; it leads to
cache coherency problems; it isn’t easy to understand and it is architecture
dependent.

6.3 Internal Parallelism

The results for the experiment of Section 3.2 on a Sun UltraSparc are given in
Figure 2. Unlike the Pentium, as the selectivity approaches 1, the performance
of the && plan continues to worsen. The reason for this behavior is that the
Sun can execute multiple instructions at a time. For the & algorithm and the

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

↗Ken Ross. Selection Conditions in Main Memory. TODS 2004.
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Use Case: (De-)Compression

Compression can help overcome the I/O bottleneck of modern CPUs.

disk ↔ memory

memory ↔ cache (!)

Column stores have high potential for compression. �Why?

But:

(De-)compression has to be fast.

200–500 MB/s (LZRW1 and LZOP) won’t help us much.

Aim for multi-gigabyte per second decompression speeds.

Maximum compression rate is not a goal.
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Lightweight Compression Schemes

MonetDB/X100 implements lightweight compression schemes:

PFOR (Patched Frame-of-Reference)

small integer values that are positive offsets from a base value; one

base value per (disk) block

PFOR-DELTA (PFOR on Deltas)

encode differences between subsequent items using PFOR

PDICT (Patched Dictionary Compression)

integer codes refer into an array for values (the dictionary)

All three compression schemes allow exceptions, values that are too far

from the base value or not in the dictionary.
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PFOR Compression

E.g., compress the digits of π using 3-bit PFOR compression.

header 3 1

4 1 5 2 6 5 3 5

3 2

⊥ ⊥
⊥ ⊥ ⊥

9 7 9 8 9

compressed data

exceptions

Decompressed numbers: 31415926535897932
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Decompression

During decompression, we have to consider all the exceptions:

for (i = j = 0; i < n; i++)

if (code[i] != ⊥)
output[i] = DECODE (code[i]);

else

output[i] = exception[--j];

For PFOR, DECODE is a simple addition:

#define DECODE(a) ((a) + base_value)

�
The branch in the above code may bear a high misprediction risk.
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Misprediction CostSection 6.2: Super-scalar compression 143
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Figure 6.4: Decompression bandwidth, branch miss rate and instructions-per-
cycle depending on the exception rate

demonstrates most clearly on Pentium4 how NAIVE decompression through-
put rapidly deteriorates as the exception rate gets nearer to 50%. The cause are
branch mispredictions2 on the if-then-else test for an exception, that becomes
impossible to predict. In the graph on top, we see that the IPC takes a nosedive
to 0.5 at that point, showing that branch mispredictions are severely penalized
by the 31 stage pipeline of Pentium4.
To avoid this problem, we propose the following alternative “patch” ap-

proach:

int Decompress<ANY>( int n, int bitwidth,
ANY *__restrict__ output,
void *__restrict__ input,
ANY *__restrict__ exception,
int *next_exception)

{
int next, code[n], cur = *next_exception;

UNPACK[bitwidth](code, input, n); /* bit-unpack the values */

/* LOOP1: decode regardless of exceptions */

2We collected IPC, cache misses, and branch misprediction statistics using CPU event
counters on all test platforms.

Source: M. Żukowski. Balancing Vectorized Query Execution with Bandwidth-Optimized
Storage. PhD Thesis, University of Amsterdam. Sept. 2009
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Avoiding the Misprediction Cost

Like with predication, we can avoid the high misprediction cost if we’re

willing to invest some unnecessary work.

Run decompression in two phases:

1 Decompress all regular fields, but don’t care about exceptions.

2 Work in all the exceptions and patch the result.

/* ignore exceptions during decompression */

for (i = 0; i < n; i++)

output[i] = DECODE (code[i]);

/* patch the result */

foreach exception

patch corresponding output item ;
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Patching the Output

�We don’t want to use a branch to find all exception targets!

Thus: interpret values in “exception holes” as linked list:

header 3 1

4 1 5 2 6 5 3 5

7 3 2

5 0

1 3

9 9 8 9

compressed data

exceptions

→ Can now traverse exception holes and patch in exception values.
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Patching the Output

The resulting decompression routine is branch-free:

/* ignore exceptions during decompression */

for (i = 0; i < n; i++)

output[i] = DECODE (code[i]);

/* patch the result (traverse linked list) */

j = 0;

for (cur = first_exception; cur < n; cur = next) {

next = cur + code[cur] + 1;

output[cur] = exception[--j];

}

→ See slide 120 for experimental data on two-loop decompression.
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Example

� 3-bit-PFOR-compressed representation of the digits of e?

e = 2.718 281 828 459 045 235 360 287 471 352 662 497 757 247 093

699 959 574 966 967 627 724 076 630 353 547 594 571 382 178 525 . . .
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PFOR Compression Speed
Section 6.2: Super-scalar compression 145
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Figure 6.5: PFOR compression bandwidth as a function of exception rate, using
an if-then-else (NAIVE), predication (PRED) and double-cursor predication
(DC)

On Itanium2, the branch mispredictions are avoided thanks to branch pred-
ication explained in Section 2.1.5.2. As a result, the performance of the NAIVE
kernel closely tracks that of PFOR and PDICT, as presented in the rightmost
graph in Figure 6.4. Overall, the patching schemes are clearly to be preferred
over the NAIVE approach, as they are faster on all tested architectures.

6.2.5 Compression

Previous database compression work mainly focuses on decompression perfor-
mance, and views compression as a one-time investment that is amortized by
repeated use of the compressed data. This is caused by the low throughput
of compression, often an order of magnitude slower than decompression (see
Figure 6.2), such that compression bandwidth is clearly lower than I/O write
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Improving IPC

The actual execution of instructions is handled in individual

functional units

e.g., load/store unit, ALU, floating point unit.

Often, some units are replicated.

Chance to execute multiple instructions at the same time.

Intel’s Nehalem, for instance, can process up to 4 instructions at

the same time.

→ IPC can be as high as 4.

→ Such CPUs are called superscalar CPUs.
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Dynamic Scheduling

Higher IPCs are achieved with help of dynamic scheduling.

instr. stream

Memory Units

FP Unit

ALU Units

reservation stations

Instructions are dispatched to reservation stations.

They are executed as soon as all hazards are cleared.

Register renaming helps to reduce data hazards.

This technique is also known as Tomasulo’s algorithm.
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Example: Dynamic Scheduling in MIPS
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Instruction-Level Parallelism

Usually, not all units can be kept busy with a single instruction stream:

time

fu
n

ctio
n

a
l

u
n

its

instr. stream

Reasons:

data hazards, cache miss stalls, . . .
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Thread-Level Parallelism

Idea: Use the spare slots for an independent instruction stream.

instr. stream 1

instr. stream 2

time

fu
n

ctio
n

a
l

u
n

its

This technique is called simultaneous multithreading.4

Surprisingly few changes are required to implement it.

Tomasulo’s algorithm requires virtual registers anyway.

Need separate fetch units for both streams.

4Intel uses the term “hyperthreading.”
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Resource Sharing

Threads share most of their resources:

caches (all levels),

branch prediction functionality (to some extent).

This may have negative effects. . .

threads that pollute each other’s caches

. . . but also positive effects.

threads that cooperatively use the cache?
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Use Cases

Tree-based indexes:

Hash-based indexes:

h

Both cases depend on hard-to-predict pointer chasing.
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Helper Threads

Idea:

Next to the main processing thread run a helper thread.

Purpose of the helper thread is to prefetch data.

Helper thread works ahead of the main thread.

work-ahead set

main thread helper thread

Cache

Main Memory

Main thread populates work-ahead set with pointers to prefetch.
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Main Thread

Consider the traversal of a tree-structured index:

1 foreach input item do

2 read root node, prefetch level 1 ;

3 read node on tree level 1, prefetch level 2 ;

4 read node on tree level 2, prefetch level 3 ;
...

Helper thread will not have enough time to prefetch.
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Main Thread

Thus: Process input in groups.

1 foreach group g of input items do

2 foreach item in g do

3 read root node, prefetch level 1 ;

4 foreach item in g do

5 read node on tree level 1, prefetch level 2 ;

6 foreach item in g do

7 read node on tree level 2, prefetch level 3 ;

...

Data may now have arrived in caches by the time we reach next level.
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Helper Thread

Helper thread accesses addresses listed in work-ahead set, e.g.,

temp += *((int *) p);

Purpose: load data into caches

�Why not use prefetchxx assembly instructions?

Only read data; do not affect semantics of main thread.

Use a ring buffer for work-ahead set.

Spin-lock if helper thread is too fast.

� Which thread is going to be the faster one?

Helper thread has less work to do,

but will suffer many cache misses (hopefully).
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Experiments (Tree-Structured Index)
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Problems

There’s a high chance that both threads access the same cache line at

the same time.

Must ensure in-order processing.

CPU will raise a Memory Order Machine Clear (MOMC) event

when it detects parallel access.

→ Pipelines flushed to guarantee in-order processing.

→ MOMC events cause a high penalty.

Effect is worst when the helper thread spins to wait for new data.

Thus:

Let helper thread work backward.
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Experiments (Tree-Structured Index)
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Cache Miss Distribution
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Figure 4: CSB+ Tree Workload for the Work-ahead Set

the two scenarios explains the big performance dif-
ference. The interference effect decreases with larger
work-ahead set sizes because the average distance be-
tween the two threads is larger and there is a smaller
likelihood that the two threads are operating on the
same cache line. In the rest of this paper, we use back-
ward preloading with spin-wait when using a work-
ahead set.

Figure 4(c) shows the distribution of cache miss
penalties for the backward preloading scenario with
spin-looping. The other methods had similar distribu-
tions of cache misses. The helper thread absorbs most
of the cache misses, up to 97%. The cache miss re-
duction in the main thread is the reason for the 33%
performance improvement. We have generally been
successful at transferring cache misses from the main
thread to the helper thread without increasing the to-
tal number of cache missses. The absence of an in-
crease in cache misses is a consequence of our design,
in which the work-ahead set structure itself occupies
just a small fraction of the L2 cache.
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Figure 5: Clustered and Unclustered Probes

Figure 5 compares work-ahead set performance of
clustered probes with that of unclustered probes. We
only show the performance of backward preloading
with spin-wait; other scenarios have similar perfor-
mance curves and are omitted. Random probes are
generally more expensive than sequential probes and
provide a more realistic workload. Using a work-ahead
set results in a 41% speedup for unclustered probes.
This improvement is even larger than for sequential
probes, primarily because there are more cache misses

in the unclustered case.
As we described in Section 4.2, the performance

of preloading is poor when the work-ahead set size
is too small, which we see experimentally to be 64
references. The high number of expensive MOMC
events outweighs any cache improvement. All preload-
ing methods start to deteriorate due to the increasing
effect of cache pollution once the size is larger than
1024 references, which is about one quarter of the L2
cache size. As long as the size of a work-ahead set
is in the range between 64 and 1024, the backward
preloading performance (with spin-looping) is good,
and relatively insensitive to the work-ahead set size.
Thus, our preloading solution is robust. One would
size the workahead set at the low end of this range,
say 128 entries, so that more cache capacity is avail-
able for other purposes. In what follows, experiments
using the work-ahead set will employ a size of 128.

6.2 Threading Performance

Now we compare all three threading techniques when
applied to a CSB+ tree traversal and an in-memory
hash join, with unclustered probes.

The hash join operator joins two tables, each con-
taining 2 million 64-byte records. The hash join pro-
duces a table of 128-byte output records. The join keys
are 32-bit integers, which are randomly assigned values
in the range from 1 to 2 million. An in-memory hash
table is pre-built over one table. The probe stream is
unclustered. We use join keys from the probe records
to probe the in-memory hash table and generate join
results. (When we varied the record size, the rela-
tive performance of the various methods was similar
to what is shown below.)

In these experiments One Thread and Two Threads
refer to non-staged implementations running either
alone or in parallel. Two Threads means that the
same operator is being run in each thread, but each
operator has its own input and output data. We also
provide similar labels for the staged implementations.
Bithreaded refers to operators, both staged and un-
staged, that partition their input and process it in an
interleaved fashion as described in Section 3. Finally,
Work-ahead Set is a staged operator with a helper
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