
Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2014

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 1

Part VI

Graphics Processors (GPUs)

I adopted some of this material from a slide set of René Müller

(now with IBM Research).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 205

Processor Technology

While general-purpose CPUs increasingly feature “multi-media”

functionality,

CPUs

SIMD

parallelism

rich
instructions

streaming

GPUs

programmable
shaders

I/Ogeneral-purpose
instructions

memory
model

graphics processors become increasingly general-purpose.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 206

Graphics Pipeline

App Front-End
Transform &

Lighting

Geometry &

Primitive

Assembly
Rasterization

Fragment

Coloring &

Texture

Raster &

Operations
Frame Buffer

API vertices

Fragments

connectivity information

Scissor

Alpha

Stencil

Depth

Test

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 207

Graphics Processors

Some tasks in the pipeline lend themselves to in-hardware processing.

Embarrassingly parallel

Few and fairly simple operations

Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today’s cards can do

much more.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 208

Toward Programmable GPUs

The programmability of GPUs has improved dramatically.

hard-coded fix-function pipeline

customization through parameters

programmable shaders

vertex shader

geometry shader

fragment shader (fragment: pixel)

“general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 209

Database Processing in Early GPUs

All screen pixels rendered into frame buffer, separated into

color typically an RGB color value

depth depth associated with this pixel; used to distinguish scene

items in the front from those in the back

stencil a mask that can be set to only render parts of the screen

values.

Idea: (example: predicate on attribute and constant)

Bring data set into depth buffer of the GPU.

Evaluate comparison as depth test (Booleans as stencil tests).

Govindaraju et al. Fast Computation of Database Operations using Graphics

Processors. SIGMOD 2004.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 210

Problems

In practice, the idea is/was more tricky

No direct access to GPU buffers from CPU.

→ Write fragment program to render texture into depth buffer.

Data movement host ↔ GPU is expensive.

Limited amounts of memory on graphics card.

Mapping task → GPU program often convoluted.

Limited support for data types and precision.

Focus on floating-point arithmetics (often with limited precision

and/or standards-compliance).

Modern cards and tools ease these problems significantly.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 211

General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.

→ geometry shaders idle for pixel-heavy workloads and vice versa

→ unified model with general-purpose cores

Thus: Design inspired by CPUs, but different

Cache

Control
ALU ALU

ALU ALU

CPU GPU

Rationale: Optimize for throughput, not for latency.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 212

CPUs vs. GPUs

CPU: task parallelism

relatively heavyweight threads

10s of threads on 10s of cores

each thread managed explicitly

threads run different code

GPU: data parallelism

lightweight threads

10,000s of threads on 100s of

cores

threads scheduled in batches

all threads run same code

→ SPMD, single program,

multiple data

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 213

Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

Don’t try to reduce latency, but hide it.

→ Large thread pool rather than caches

(This idea is similar to SMT in commodity CPUs ↗ slide 130.)

Assume data parallelism and restrict synchronization.

→ Threads and small groups of threads use local memories.

→ Synchronization only within those groups (more later).

Hardware thread scheduling (simple, in-order).

→ Schedule threads in batches (; “warps”).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 214

OpenCL Computation Model

Host Device (GPU)

Kernel 1

Kernel 2

copy data

launch

sync

launch

sync

w
o

rk
w

a
it

w
o

rk
w

a
it

copy data

Host system and co-processor

(GPU is only one possible

co-processor.)

Host triggers

data copying

host↔ co-processor,

invocations of compute

kernels.

Host interface: command queue.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 215

Processing Model: (Massive) Data Parallelism

A traditional loop

for (i = 0; i < nitems; i++)

do_something (i);

becomes a data parallel kernel invocation in OpenCL (; map):

status = clEnqueueNDRangeKernel (

commandQueue,

do_something_kernel, ..., &nitems, ...);

__kernel void do_something_kernel (...) {

int i = get_global_id (0);

...;

}

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 216

Kernel Invocation

Idea: Invoke kernel for each point in a problem domain

e.g., 1024× 1024 image, one kernel invocation per pixel;

→ 1,048,576 kernel invocations (“work items”).

Don’t worry (too much) about task→ core assignment or number of

threads created; runtime does it for you.

Problem domain can be 1-, 2-, or 3-dimensional.

Can pass global parameters to all work item executions.

Kernel must figure out work item by calling get_global_id ().

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 217

Compute Kernels

OpenCL defines a C99-like language for compute kernels.

Compiled at runtime to particular core type.

Additional set of built-in functions:

Context (e.g., get_global_id ()); synchronization.

Fast implementations for special math routines.

__kernel void square (__global float *in,

__global float *out)

{

int i = get_global_id (0);

out[i] = in[i] * in[i];

}

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 218

Work Items and Work Groups

Work items may be grouped into work groups.

Work groups ! scheduling batches.

Synchronization between work items only within work groups.

There is a device-dependent limit on the number of work items per

work group (can be determined via clGetDeviceInfo ()).

Specify items per group when queuing the kernel invocation.

All work groups must have same size (within one invocation).

E.g., Problem space: 800× 600 items (2-dimensional problem).

→ Could choose 40× 6, 2× 300, 80× 5, . . . work groups.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 219

Example: NVIDIA GPUs

NIVIDA GTX 280

source: www.hardwaresecrets.com

10 Thread Processing Clusters

10× 3 Streaming Multiprocessors

10× 3× 8 Scalar Processor Cores

→ More like ALUs (↗ slide 212)

Each Multiprocessor:

16k 32-bit registers

16 kB shared memory

up to 1024 threads

(may be limited by registers

and/or memory)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 220

Inside a Streaming Multiprocessor

shared
memory

DP

SFU SFU

SPSP

SPSP

SPSP

SPSP

SPSP

SPSP

SPSP

SPSP

C-Cache

MT Issue

I-Cache

8 Scalar Processors (Thread Processors)

single-precision floating point

32-bit and 64-bit integer

2 Special Function Units

sin, cos, log, exp

Double Precision unit

16 kB Shared Memory

Each Streaming Multiprocessor: up to 1,024 threads.

GTX 280: 30 Streaming Multiprocessors

→ 30,720 concurrent threads (!)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 221

Inside a Streaming Multiprocessor: nVidia Fermi

8

Third Generation Streaming

Multiprocessor

The third generation SM introduces several

architectural innovations that make it not only the

most powerful SM yet built, but also the most

programmable and efficient.

512 High Performance CUDA cores

Each SM features 32 CUDA

processors—a fourfold

increase over prior SM

designs. Each CUDA

processor has a fully

pipelined integer arithmetic

logic unit (ALU) and floating

point unit (FPU). Prior GPUs used IEEE 754-1985

floating point arithmetic. The Fermi architecture

implements the new IEEE 754-2008 floating-point

standard, providing the fused multiply-add (FMA)

instruction for both single and double precision

arithmetic. FMA improves over a multiply-add

(MAD) instruction by doing the multiplication and

addition with a single final rounding step, with no

loss of precision in the addition. FMA is more

accurate than performing the operations

separately. GT200 implemented double precision FMA.

In GT200, the integer ALU was limited to 24-bit precision for multiply operations; as a result,

multi-instruction emulation sequences were required for integer arithmetic. In Fermi, the newly

designed integer ALU supports full 32-bit precision for all instructions, consistent with standard

programming language requirements. The integer ALU is also optimized to efficiently support

64-bit and extended precision operations. Various instructions are supported, including

Boolean, shift, move, compare, convert, bit-field extract, bit-reverse insert, and population

count.

16 Load/Store Units

Each SM has 16 load/store units, allowing source and destination addresses to be calculated

for sixteen threads per clock. Supporting units load and store the data at each address to

cache or DRAM.

Dispatch Unit

Warp Scheduler

Instruction Cache

Dispatch Unit

Warp Scheduler

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

SFU

SFU

SFU

SFU

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Core

Register File (32,768 x 32-bit)

CUDA Core

Operand Collector

Dispatch Port

Result Queue

FP Unit INT Unit

Fermi Streaming Multiprocessor (SM)
Source: nVidia Fermi White Paper

32 “cores” (thread processors) per

streaming multiprocessor (SM)

but fewer SMs per GPU: 16

(vs. 30 in GT200 architecture)

512 “cores” total

“cores” now double-precision-capable

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 222

Scheduling in Batches

In SM threads are scheduled in

units of 32, called warps.

Warp: Set of 32 parallel

threads that start together at

the same program address.

warp (dt. Kett- oder Längsfaden)

For memory access warps are

split into half-warps consisting

of 16 threads

Warps are scheduled with

zero-overhead

Scoreboard is used to track

which warps are ready to

execute

GTX 280: 32 warps per

multiprocessor (1024 threads)

newer cards: 48 warps per

multiprocessor (1536 threads)

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 223

SPMD / SIMT Processing
ti

m
e

SIMT instruction scheduler

SP SP SP SP SP SP SP SP

...

warp 0 instruction @addr 15

warp 1 instruction @addr 8

warp 2 instruction @addr 4

warp 0 instruction @addr 16

warp 1 instruction @addr 9

SIMT: Single Instruction,

Multiple Threads

All threads execute the same

instruction.

Threads are split into warps by

increasing thread IDs (warp 0

contains thread 0).

At each time step scheduler

selects warp ready to execute

(i.e., all its data are available)

nVidia Fermi: dual issue; issue

two warps at oncea

ano dual issue for double-precision instr.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 224

Warps and Latency Hiding

Some runtime characteristics:

Issuing a warp instruction takes 4 cycles (8 scalar processors).

Register write-read latency: 24 cycles.

Global (off-chip) memory access: ≈ 400 cycles.

Threads are executed in-order.

→ Hide latencies by executing other warps when one is paused.

→ Need enough warps to fully hide latency.

E.g.,

Need 24/4 = 6 warps to hide register dependency latency.

Need 400/4 = 100 instructions to hide memory access latency. If

every 8th instruction is a memory access, 100/8 ≈ 13 warps would

be enough.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 225

Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various resource limits

limited number of 32-bit registers per multiprocessor

E.g.: 11 registers per thread, 256 threads/items per work group.

CUDA compute capability 1.1: 8,192 registers per multiprocessor.

→ max. 2 work groups per multiprocessor (3× 256× 11 > 8192)

48 kB shared memory per multiprocessor (compute cap. 2.0)

E.g.: 12 kB per work group

→ max. 4 work groups per multiprocessor

8 work groups per multiprocessor; max. 512 work items per work

group

Additional constraints: branch divergence, memory coalescing.

Occupancy calculation (and choice of work group size) is complicated!

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 226

Executing a Warp Instruction

Within a warp, all threads execute same instructions.

→ What if the code contains branches?

if (i < 42)

then_branch ();

else

else_branch ();

If one thread enters the branch, all threads have to execute it.

→ Effect of branch execution discarded if necessary.

; Predicated execution (↗ slide 106).

This effect is called branch divergence.

Worst case: all 32 threads take a different code path.

→ Threads are effectively executed sequentially.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 227

OpenCL Memory Model

global memory

compute unit 1

local memory

private
memory

private
memory

work
item 1

work
item 2

compute unit 2

local memory

private
memory

private
memory

work
item 1

work
item 2

compute device

host memory

host

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 228

OpenCL ↔ Cuda

NVIDIA/Cuda uses a slightly different terminology:

OpenCL Cuda

private memory registers on-chip

local memory shared memory on-chip

global memory global memory off-chip

On-chip memory is significantly faster than off-chip memory.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 229

Memory Access Cost (Global Memory; NVIDIA)

Like in CPU-based systems, GPUs access global memory in chunks

(32-bit, 64-bit, or 128-bit segments).

→ Most efficient if accesses by threads in a half-warp coalesce.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

Coalesced access → 1 memory transaction

.

memory
half-warp

Misaligned → 16 memory transactions (2 if comp. capability ≥ 1.2)

.

memory
half-warp

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 230

Coalescing Example

Example to demonstrate coalescing effect:

__kernel void

copy (__global unsigned int *din,

__global unsigned int *dout,

const unsigned int offset)

{

int i = get_global_id (0);

dout[i] = din[i + offset];

}

�
Strided access causes similar problems!

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 231

Shared Memory (NVIDIA)

Shared memory (OpenCL: “local memory”):

fast on-chip memory (few cycles latency)

throughput: 38–44 GB/s per multiprocessor(!)

partitioned into 16 banks

→ 16 threads (1 half-warp) can access shared

memory simultaneously if and only if they

all access a different bank.

→ Otherwise a banking conflict will occur.

Conflicting accesses are serialized

→ (potentially significant) performance

impact

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 15

...

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 232

Bank Conflicts to Shared Memory

stride width: 1 word

Thread 0 Bank 0

Thread 1 Bank 1

Thread 2 Bank 2

Thread 3 Bank 3

Thread 4 Bank 4

Thread 5 Bank 5

Thread 6 Bank 6

Thread 7 Bank 7

Thread 8 Bank 8

Thread 9 Bank 9

Thread 10 Bank 10

Thread 11 Bank 11

Thread 12 Bank 12

Thread 13 Bank 13

Thread 14 Bank 14

Thread 15 Bank 15

→ no bank conflicts

Thread 0 Bank 0

Thread 1 Bank 1

Thread 2 Bank 2

Thread 3 Bank 3

Thread 4 Bank 4

Thread 5 Bank 5

Thread 6 Bank 6

Thread 7 Bank 7

Thread 8 Bank 8

Thread 9 Bank 9

Thread 10 Bank 10

Thread 11 Bank 11

Thread 12 Bank 12

Thread 13 Bank 13

Thread 14 Bank 14

Thread 15 Bank 15

→ no bank conflicts

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 233

Bank Conflicts to Shared Memory (cont.)

stride width: 2 words

Thread 0 Bank 0

Thread 1 Bank 1

Thread 2 Bank 2

Thread 3 Bank 3

Thread 4 Bank 4

Thread 5 Bank 5

Thread 6 Bank 6

Thread 7 Bank 7

Thread 8 Bank 8

Thread 9 Bank 9

Thread 10 Bank 10

Thread 11 Bank 11

Thread 12 Bank 12

Thread 13 Bank 13

Thread 14 Bank 14

Thread 15 Bank 15

→ 2-way bank conflicts

stride width: 4 words

Thread 0 Bank 0

Thread 1 Bank 1

Thread 2 Bank 2

Thread 3 Bank 3

Thread 4 Bank 4

Thread 5 Bank 5

Thread 6 Bank 6

Thread 7 Bank 7

Thread 8 Bank 8

Thread 9 Bank 9

Thread 10 Bank 10

Thread 11 Bank 11

Thread 12 Bank 12

Thread 13 Bank 13

Thread 14 Bank 14

Thread 15 Bank 15

→ 4-way bank conflicts

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 234

Exception: Broadcast Reads

Broadcast reads do not lead to a

bank conflict.

All threads must read the same

word.

Thread 0 Bank 0

Thread 1 Bank 1

Thread 2 Bank 2

Thread 3 Bank 3

Thread 4 Bank 4

Thread 5 Bank 5

Thread 6 Bank 6

Thread 7 Bank 7

Thread 8 Bank 8

Thread 9 Bank 9

Thread 10 Bank 10

Thread 11 Bank 11

Thread 12 Bank 12

Thread 13 Bank 13

Thread 14 Bank 14

Thread 15 Bank 15

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 235

Thread Synchronization

Threads may use built-in functions to synchronize within work groups.

barrier (flags) Block until all threads in the group have reached

the barrier. Also enforces memory ordering.

mem_fence (flags) Enforce memory ordering: all memory

operations are committed before thread continues.

for (unsigned int i = 0; i < n; i++)

{

do_something ();

barrier (CLK_LOCAL_MEM_FENCE);

}

� If barrier occurs in a branch, same branch must be taken by all

threads in the group (danger: deadlocks or unpredictable results).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 236

Synchronization Across Work Groups

To synchronize across work groups,

use in-order command queue and queue multiple kernel invocations

from the host side

→ Can also queue markers and barriers to the command queue.

or

use OpenCL event mechanism.

→ Can also synchronize host↔ device and kernel executions in

multiple command queues.

To wait on host side until all queued commands have been completed,

use clFinish (command queue).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 237

GPUs

To summarize,

GPUs provide high degrees of parallelism that can be programmed

using a high-level language.

But:

GPUs are not simply “multi-core processors.”

Unleashing their performance requires significant efforts and great

care for details.

Also note that

GPUs provide lots of Giga-FLOPS.

→ But rather few applications really need raw GFLOPS.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 238

	Graphics Processors (GPUs)
	Technology Trends: CPUs and GPUs
	Earlier Graphics Processors

	Today: General-Purpose GPUs
	Throughput vs. Latency
	CPUs vs. GPUs
	OpenCL Computation Model
	Example: NVIDIA GPUs
	Memory Access Cost
	Thread Synchronization

