Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group jens.teubner@cs.tu-dortmund.de

Summer 2014

Part VI

Graphics Processors (GPUs)

I adopted some of this material from a slide set of René Müller (now with IBM Research).

Processor Technology

While **general-purpose CPUs** increasingly feature "multi-media" functionality,

graphics processors become increasingly general-purpose.

Graphics Pipeline

Graphics Processors

Some tasks in the pipeline lend themselves to in-hardware processing.

- Embarrassingly parallel
- Few and fairly simple operations
- Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today's cards can do much more.

Toward Programmable GPUs

The programmability of GPUs has improved dramatically.

hard-coded **fix-function pipeline** customization through parameters programmable shaders

- vertex shader
- geometry shader

■ fragment shader (fragment: pixel) "general-purpose" GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)

Database Processing in Early GPUs

All screen pixels rendered into **frame buffer**, separated into

color typically an RGB color value

depth depth associated with this pixel; used to distinguish scene items in the front from those in the back

stencil a mask that can be set to only render parts of the screen values.

Idea: (example: predicate on attribute and constant)

- Bring data set into depth buffer of the GPU.
- Evaluate comparison as **depth test** (Booleans as **stencil tests**).

Govindaraju *et al.* Fast Computation of Database Operations using Graphics Processors. *SIGMOD 2004*.

Problems

In practice, the idea is/was more tricky

- No direct access to GPU buffers from CPU.
 - → Write **fragment program** to render texture into depth buffer.
- **Data movement** host \leftrightarrow GPU is expensive.
- Limited amounts of memory on graphics card.
- Mapping task → GPU program often convoluted.
- Limited support for data types and precision.
 - Focus on floating-point arithmetics (often with limited precision and/or standards-compliance).

Modern cards and tools ease these problems significantly.

General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.

- ightarrow geometry shaders idle for pixel-heavy workloads and vice versa
- → **unified model** with general-purpose cores

Thus: Design inspired by CPUs, but different

Rationale: Optimize for **throughput**, not for **latency**.

CPUs vs. GPUs

CPU: task parallelism

- relatively heavyweight threads
- 10s of threads on 10s of cores
- each thread managed explicitly
- threads run different code

GPU: data parallelism

- lightweight threads
- 10,000s of threads on 100s of cores
- threads scheduled in batches
- all threads run same code
 - → SPMD, single program, multiple data

Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

- Don't try to **reduce** latency, but **hide** it.
 - → Large thread pool rather than caches (This idea is similar to SMT in commodity CPUs ✓ slide 130.)
- Assume data parallelism and restrict synchronization.
 - \rightarrow Threads and small **groups** of threads use local memories.
 - \rightarrow Synchronization only within those groups (more later).
- Hardware **thread scheduling** (simple, in-order).
 - \rightarrow Schedule threads in **batches** (\sim "warps").

OpenCL Computation Model

- Host system and co-processor (GPU is only one possible co-processor.)
- Host triggers
 - data copying host ↔ co-processor,
 - invocations of compute kernels.
- Host interface: command queue.

Processing Model: (Massive) Data Parallelism

A traditional loop

```
for (i = 0; i < nitems; i++)
    do_something(i);</pre>
```

becomes a data parallel kernel invocation in OpenCL (→ map):

```
__kernel void do_something_kernel(...) {
   int i = get_global_id(0);
   ...;
}
```

Kernel Invocation

Idea: Invoke kernel for each point in a problem domain

- e.g., 1024 × 1024 image, one kernel invocation per pixel; \rightarrow 1,048,576 kernel invocations ("work items").
- Don't worry (too much) about task → core assignment or number of threads created; **runtime** does it for you.
- Problem domain can be 1-, 2-, or 3-dimensional.

- Can pass global parameters to all work item executions.
- Kernel must figure out work item by calling get_global_id().

Compute Kernels

OpenCL defines a **C99-like** language for compute kernels.

- Compiled **at runtime** to particular core type.
- Additional set of built-in functions:
 - Context (e.g., get_global_id ()); synchronization.
 - Fast implementations for special math routines.

Work Items and Work Groups

Work items may be grouped into **work groups**.

- Work groups scheduling batches.
- Synchronization between work items **only** within work groups.
- There is a device-dependent limit on the number of work items per work group (can be determined via clGetDeviceInfo()).
- Specify items per group when queuing the kernel invocation.
- All work groups must have same size (within one invocation).
- *E.g.*, Problem space: 800×600 items (2-dimensional problem).
 - \rightarrow Could choose 40 \times 6, 2 \times 300, 80 \times 5, ... work groups.

Example: NVIDIA GPUs

NIVIDA GTX 280

source: www.hardwaresecrets.com

- 10 Thread Processing Clusters
- 10 × 3 Streaming Multiprocessors
- 10 × 3 × 8 Scalar Processor Cores → More like ALUs (\times slide 212)
 - → Iviore like ALOS (/ slide 2
- Each Multiprocessor:
 - 16k 32-bit registers
 - 16 kB shared memory
 - up to 1024 threads (may be limited by registers and/or memory)

Inside a Streaming Multiprocessor

- 8 Scalar Processors (Thread Processors)
 - single-precision floating point
 - 32-bit and 64-bit integer
- 2 Special Function Units
 - sin, cos, log, exp
- Double Precision unit
- 16 kB Shared Memory
- Each Streaming Multiprocessor: up to 1,024 threads.
- GTX 280: 30 Streaming Multiprocessors
 - \rightarrow 30,720 concurrent threads (!)

Inside a Streaming Multiprocessor: nVidia Fermi

- 32 "cores" (thread processors) per streaming multiprocessor (SM)
- but fewer SMs per GPU: 16 (vs. 30 in GT200 architecture)
- 512 "cores" total
- "cores" now double-precision-capable

Source: nVidia Fermi White Paper

Scheduling in Batches

- In SM threads are scheduled in units of 32, called warps.
- Warp: Set of 32 parallel threads that start together at the same program address.

warp (dt. Kett- oder Längsfaden)

- For memory access warps are split into half-warps consisting of 16 threads
- Warps are scheduled with zero-overhead
- Scoreboard is used to track which warps are ready to execute
- GTX 280: 32 warps per multiprocessor (1024 threads)
- newer cards: 48 warps per multiprocessor (1536 threads)

SPMD / SIMT Processing

SIMT instruction scheduler instruction @addr 15 instruction @addr 8 warp 2 instruction @addr 4

- **SIMT**: Single Instruction, Multiple Threads
- All threads execute the same instruction.
- Threads are split into warps by increasing thread IDs (warp 0 contains thread 0).
- At each time step scheduler selects warp ready to execute (i.e., all its data are available)
- nVidia Fermi: dual issue; issue two warps at once^a

ano dual issue for double-precision instr.

Warps and Latency Hiding

Some runtime characteristics:

- Issuing a warp instruction takes **4 cycles** (8 scalar processors).
- Register write-read latency: 24 cycles.
- Global (off-chip) memory access: \approx **400 cycles**.

Threads are executed in-order.

- \rightarrow **Hide latencies** by executing other warps when one is paused.
- → Need enough warps to fully hide latency.

E.g.,

- Need 24/4 = 6 warps to hide register dependency latency.
- Need 400/4 = 100 instructions to hide memory access latency. If every 8th instruction is a memory access, $100/8 \approx 13$ warps would be enough.

Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various **resource limits**

- limited number of 32-bit **registers** per multiprocessor
 E.g.: 11 registers per thread, 256 threads/items per work group.
 CUDA compute capability 1.1: 8,192 registers per multiprocessor.
 → max. 2 work groups per multiprocessor (3 × 256 × 11 > 8192)
- 48 kB **shared memory** per multiprocessor (compute cap. 2.0) *E.g.*: 12 kB per work group

 → max. 4 work groups per multiprocessor
 - → max. 4 work groups per multiprocessor
- 8 work groups per multiprocessor; max. 512 work items per work group
- Additional constraints: **branch divergence**, **memory coalescing**.

Occupancy calculation (and choice of work group size) is complicated!

Executing a Warp Instruction

Within a warp, **all threads** execute **same instructions**.

→ What if the code contains **branches**?

```
if (i < 42)
        then_branch();
else
        else_branch();</pre>
```

- If **one** thread enters the branch, **all** threads have to execute it.
 - ightarrow Effect of branch execution discarded if necessary.
 - → Predicated execution (\times slide 106).
- This effect is called **branch divergence**.
- Worst case: all 32 threads take a different code path.
 - → Threads are effectively executed **sequentially**.

OpenCL Memory Model

OpenCL ↔ Cuda

NVIDIA/Cuda uses a slightly different terminology:

OpenCL	Cuda	
private memory	registers	on-chip
local memory	shared memory	on-chip
global memory	global memory	off-chip

On-chip memory is **significantly** faster than off-chip memory.

Memory Access Cost (Global Memory; NVIDIA)

Like in CPU-based systems, GPUs access **global memory** in chunks (32-bit, 64-bit, or 128-bit **segments**).

→ Most efficient if accesses by threads in a half-warp **coalesce**.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

■ Coalesced access → 1 memory transaction

lacktriangle Misaligned ightarrow 16 memory transactions (2 if comp. capability ≥ 1.2)

Coalescing Example

Example to demonstrate coalescing effect:

Strided access causes similar problems!

Shared Memory (NVIDIA)

Shared memory (OpenCL: "local memory"):

- fast on-chip memory (few cycles latency)
- throughput: **38–44 GB/s per multiprocessor**(!)
- partitioned into 16 banks
 - → 16 threads (1 half-warp) can access shared memory simultaneously if and only if they all access a different bank.
 - → Otherwise a banking conflict will occur.
- Conflicting accesses are serialized
 - → (potentially significant) performance impact

Bank 0

Bank 1

Bank 2

Bank 4

Bank 5

Bank 6

Bank 7

:

Bank 15

Bank Conflicts to Shared Memory

stride width: 1 word

Thread 0	\longrightarrow	Bank 0
Thread 1	\longrightarrow	Bank 1
Thread 2	\longrightarrow	Bank 2
Thread 3		Bank 3
Thread 4		Bank 4
Thread 5		Bank 5
Thread 6		Bank 6
Thread 7		Bank 7
Thread 8		Bank 8
Thread 9		Bank 9
Thread 10		Bank 10
Thread 11		Bank 11
Thread 12		Bank 12
Thread 13		Bank 13
Thread 14		Bank 14
Thread 15		Bank 15

 \rightarrow no bank conflicts

 \rightarrow no bank conflicts

Bank Conflicts to Shared Memory (cont.)

 \rightarrow 2-way bank conflicts

stride width: 4 words

 \rightarrow 4-way bank conflicts

Exception: Broadcast Reads

Broadcast reads do **not** lead to a bank conflict.

All threads must read the same word.

Thread Synchronization

Threads may use built-in functions to synchronize **within** work groups.

- barrier (flags) Block until all threads in the group have reached the barrier. Also enforces memory ordering.
- mem_fence (flags) Enforce memory ordering: all memory operations are committed before thread continues.

```
for (unsigned int i = 0; i < n; i++)
{
    do_something();
    barrier(CLK_LOCAL_MEM_FENCE);
}</pre>
```


If barrier occurs in a **branch**, same branch must be taken by **all threads** in the group (danger: deadlocks or unpredictable results).

Synchronization Across Work Groups

To synchronize across work groups,

- use in-order command queue and queue multiple kernel invocations from the host side
 - → Can also queue **markers** and **barriers** to the command queue.

or

- use OpenCL event mechanism.
 - → Can also synchronize host ↔ device and kernel executions in multiple command queues.

To wait on host side until all queued commands have been completed, use clFinish (command queue).

GPUs

To summarize,

GPUs provide high degrees of parallelism that can be programmed using a high-level language.

But:

- GPUs are not simply "multi-core processors."
- Unleashing their performance requires significant efforts and great care for details.

Also note that

- GPUs provide lots of Giga-FLOPS.
 - \rightarrow But rather few applications really need raw GFLOPS.