Part VI

Graphics Processors (GPUs)

I adopted some of this material from a slide set of René Müller (now with IBM Research).
While **general-purpose CPUs** increasingly feature “multi-media” functionality,

graphics processors become increasingly **general-purpose**.
Graphics Pipeline

Connectivity information:

- App
- Front-End
- Transform & Lighting
- Geometry & Primitive Assembly
- Rasterization
- Frame Buffer
- Raster & Operations
- Fragment Coloring & Texture

Connectivity information includes:
- Scissor
- Alpha
- Stencil
- Depth

Test:

© Jens Teubner · Data Processing on Modern Hardware · Summer 2014
Some tasks in the pipeline lend themselves to in-hardware processing.

- Embarrassingly parallel
- Few and fairly simple operations
- Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today’s cards can do much more.
The programmability of GPUs has improved dramatically.

hard-coded **fix-function pipeline**

customization through **parameters**

programmable **shaders**

- vertex shader
- geometry shader
- fragment shader (fragment: pixel)

“**general-purpose**” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)
Database Processing in Early GPUs

All screen pixels rendered into **frame buffer**, separated into

- **color** typically an RGB color value
- **depth** depth associated with this pixel; used to distinguish scene items in the front from those in the back
- **stencil** a mask that can be set to only render parts of the screen values.

Idea: (example: predicate on attribute and constant)

- Bring data set into **depth buffer** of the GPU.
- Evaluate comparison as **depth test** (Booleans as **stencil tests**).

In practice, the idea is/was more tricky

- No direct access to GPU buffers from CPU.
 → Write **fragment program** to render texture into depth buffer.
- **Data movement** host ↔ GPU is expensive.
- Limited amounts of **memory** on graphics card.
- Mapping task → GPU program often convoluted.
- Limited support for **data types** and **precision**.
 - Focus on floating-point arithmetics (often with limited precision and/or standards-compliance).

Modern cards and tools ease these problems significantly.
General-Purpose GPUs (GPGPUs)

Original GPU design based on graphics pipeline not flexible enough.
→ geometry shaders idle for pixel-heavy workloads and vice versa
→ **unified model** with general-purpose cores

Thus: Design inspired by CPUs, but different

Rationale: Optimize for **throughput**, not for **latency**.
CPUs vs. GPUs

CPU: task parallelism
- relatively heavyweight threads
- 10s of threads on 10s of cores
- each thread managed explicitly
- threads run different code

GPU: data parallelism
- lightweight threads
- 10,000s of threads on 100s of cores
- threads scheduled in batches
- all threads run same code
 - → SPMD, single program, multiple data
Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

- Don’t try to reduce latency, but hide it.
 - Large thread pool rather than caches
 (This idea is similar to SMT in commodity CPUs \uparrow slide 130.)

- Assume data parallelism and restrict synchronization.
 - Threads and small groups of threads use local memories.
 - Synchronization only within those groups (more later).

- Hardware thread scheduling (simple, in-order).
 - Schedule threads in batches (\sim “warps”).
OpenCL Computation Model

Host system and co-processor (GPU is only one possible co-processor.)

- Host triggers
 - data copying
 - host ↔ co-processor,
 - invocations of compute kernels.

- Host interface: command queue.
A traditional loop

```c
for (i=0; i<nitems; i++)
    do_something(i);
```

becomes a **data parallel kernel invocation** in OpenCL (map):

```c
status = clEnqueueNDRangeKernel (commandQueue,
                                   do_something_kernel, ..., &nitems, ...);

__kernel void do_something_kernel(...) {
    int i = get_global_id(0);
    ...
}
```
Kernel Invocation

Idea: Invoke kernel for each point in a problem domain

- e.g., 1024 × 1024 image, one kernel invocation per pixel;
 → 1,048,576 kernel invocations (“work items”).
- Don’t worry (too much) about task → core assignment or number of threads created; **runtime** does it for you.
- Problem domain can be 1-, 2-, or 3-dimensional.

- Can pass global parameters to all work item executions.
- Kernel must figure out work item by calling `get_global_id()`.
OpenCL defines a **C99-like** language for compute kernels.

- Compiled **at runtime** to particular core type.
- Additional set of built-in functions:
 - Context (*e.g.*, `get_global_id()`); synchronization.
 - Fast implementations for special math routines.

```c
__kernel void square (__global float *in,
                      __global float *out)
{
    int i = get_global_id(0);
    out[i] = in[i] * in[i];
}
```
Work Items and Work Groups

Work items may be grouped into work groups.

- Work groups \(\leadsto\) scheduling batches.
- Synchronization between work items only within work groups.
- There is a device-dependent limit on the number of work items per work group (can be determined via \(\text{clGetDeviceInfo}()\)).
- Specify items per group when queuing the kernel invocation.
- All work groups must have same size (within one invocation).

E.g., Problem space: \(800 \times 600\) items (2-dimensional problem).
→ Could choose \(40 \times 6, 2 \times 300, 80 \times 5, \ldots\) work groups.
Example: NVIDIA GPUs

NVIDIA GTX 280

- 10 Thread Processing Clusters
- 10×3 Streaming Multiprocessors
- $10 \times 3 \times 8$ Scalar Processor Cores
 → More like ALUs (↗ slide 212)
- Each Multiprocessor:
 - 16k 32-bit registers
 - 16 kB shared memory
 - up to 1024 threads
 (may be limited by registers and/or memory)

source: www.hardwaresecrets.com
Inside a Streaming Multiprocessor

- 8 Scalar Processors (Thread Processors)
 - single-precision floating point
 - 32-bit and 64-bit integer
- 2 Special Function Units
 - sin, cos, log, exp
- Double Precision unit
- 16 kB Shared Memory
- Each Streaming Multiprocessor: up to 1,024 threads.
- GTX 280: 30 Streaming Multiprocessors
 → 30,720 concurrent threads (!)
Inside a Streaming Multiprocessor: nVidia Fermi

32 “cores” (thread processors) per streaming multiprocessor (SM)

but fewer SMs per GPU: 16 (vs. 30 in GT200 architecture)

512 “cores” total

“cores” now double-precision-capable

Source: nVidia Fermi White Paper
Scheduling in Batches

- In SM threads are scheduled in units of 32, called **warps**.
- **Warp**: Set of 32 parallel threads that start together at the same program address.

For memory access warps are split into **half-warps** consisting of 16 threads.

- Warps are scheduled with zero-overhead.
- Scoreboard is used to track which warps are ready to execute.
- GTX 280: 32 warps per multiprocessor (1024 threads)
- newer cards: 48 warps per multiprocessor (1536 threads)

warp (dt. Kett- oder Längsfaden)
SPMD / SIMT Processing

- **SIMT**: Single Instruction, Multiple Threads
- All threads execute the same instruction.
- Threads are split into warps by increasing thread IDs (warp 0 contains thread 0).
- At each time step scheduler selects warp ready to execute (*i.e.*, all its data are available).
- nVidia Fermi: dual issue; issue two warps at once\(^a\)

\(^a\)no dual issue for double-precision instr.
Warps and Latency Hiding

Some runtime characteristics:

- Issuing a warp instruction takes **4 cycles** (8 scalar processors).
- Register write-read latency: **24 cycles**.
- Global (off-chip) memory access: \(\approx 400 \text{ cycles} \).

Threads are executed **in-order**.

\[\rightarrow \text{Hide latencies} \text{ by executing other warps when one is paused}. \]
\[\rightarrow \text{Need enough warps to fully hide latency}. \]

\[\text{E.g.,} \]

- Need \(\frac{24}{4} = 6 \) warps to hide register dependency latency.
- Need \(\frac{400}{4} = 100 \) instructions to hide memory access latency. If every 8th instruction is a memory access, \(\frac{100}{8} \approx 13 \) warps would be enough.
Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various **resource limits**

- limited number of 32-bit **registers** per multiprocessor

 \[\text{E.g.: } 11 \text{ registers per thread, } 256 \text{ threads/items per work group.} \]

 CUDA compute capability 1.1: 8,192 registers per multiprocessor.

 \[\rightarrow \text{ max. } 2 \text{ work groups per multiprocessor } (3 \times 256 \times 11 > 8192) \]

- 48 kB **shared memory** per multiprocessor (compute cap. 2.0)

 \[\text{E.g.: } 12 \text{ kB per work group} \]

 \[\rightarrow \text{ max. } 4 \text{ work groups per multiprocessor} \]

- 8 **work groups** per multiprocessor; max. 512 work items per work group

- Additional constraints: **branch divergence, memory coalescing.**

Occupancy calculation (and choice of work group size) is complicated!
Executing a Warp Instruction

Within a warp, all threads execute same instructions.

→ What if the code contains branches?

```c
if (i < 42)
    then_branch();
else
    else_branch();
```

- If one thread enters the branch, all threads have to execute it.
 → Effect of branch execution discarded if necessary.
 → Predicated execution (↗ slide 106).

- This effect is called branch divergence.

- Worst case: all 32 threads take a different code path.
 → Threads are effectively executed sequentially.
OpenCL Memory Model

- **Global Memory**
- **Local Memory**
- **Private Memory**
 - **Work Item 1**
 - **Work Item 2**

Compute Device

- **Compute Unit 1**
 - Private Memory
 - Local Memory
 - Work Item 1
 - Work Item 2

- **Compute Unit 2**
 - Private Memory
 - Local Memory
 - Work Item 1
 - Work Item 2

Host

- **Host Memory**
OpenCL ↔ Cuda

NVIDIA/Cuda uses a slightly different terminology:

<table>
<thead>
<tr>
<th>OpenCL</th>
<th>Cuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>private memory</td>
<td>registers</td>
</tr>
<tr>
<td>local memory</td>
<td>shared memory</td>
</tr>
<tr>
<td>global memory</td>
<td>global memory</td>
</tr>
<tr>
<td></td>
<td>on-chip</td>
</tr>
<tr>
<td></td>
<td>on-chip</td>
</tr>
<tr>
<td></td>
<td>off-chip</td>
</tr>
</tbody>
</table>

On-chip memory is **significantly** faster than off-chip memory.
Like in CPU-based systems, GPUs access **global memory** in chunks (32-bit, 64-bit, or 128-bit **segments**).

→ Most efficient if accesses by threads in a half-warp **coalesce**.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

- Coalesced access → 1 memory transaction

```
... ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ...
  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │
  └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
  half-warp  memory
```

- Misaligned → 16 memory transactions (2 if comp. capability \(\geq 1.2 \))

```
... ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ ...
  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │  │
  └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘
  half-warp  memory
Coalescing Example

Example to demonstrate coalescing effect:

```c
__kernel void copy (__global unsigned int *din,
 __global unsigned int *dout,
 const unsigned int offset)
{
 int i = get_global_id(0);
 dout[i] = din[i + offset];
}
```

Strided access causes similar problems!
**Shared Memory (NVIDIA)**

**Shared memory** (OpenCL: “local memory”):
- **fast** on-chip memory (few cycles latency)
- throughput: **38–44 GB/s per multiprocessor** (!)

- partitioned into **16 banks**
  - 16 threads (1 **half-warp**) can access shared memory simultaneously **if and only if** they all access a different bank.
  - Otherwise a **banking conflict** will occur.

- Conflicting accesses are **serialized**
  - (potentially significant) **performance impact**
stridewidth: 1 word

→ no bank conflicts

→ no bank conflicts
Bank Conflicts to Shared Memory (cont.)

Stride width: 2 words

→ 2-way bank conflicts

-stride width: 4 words

→ 4-way bank conflicts
Exception: Broadcast Reads

Broadcast reads do not lead to a bank conflict.

- All threads must read the same word.
Thread Synchronization

Threads may use built-in functions to synchronize **within** work groups.

- `barrier(flags)` Block until all threads in the group have reached the barrier. Also enforces memory ordering.

- `mem_fence(flags)` Enforce memory ordering: all memory operations are committed before thread continues.

```c
for(unsigned int i = 0; i < n; i++)
{
 do_something();
 barrier(CLK_LOCAL_MEM_FENCE);
}
```

If barrier occurs in a **branch**, same branch must be taken by **all threads** in the group (danger: deadlocks or unpredictable results).
To synchronize across work groups,

- use **in-order** command queue and queue multiple kernel invocations from the host side
  
  → Can also queue **markers** and **barriers** to the command queue.

or

- use OpenCL **event mechanism**.
  
  → Can also synchronize host ↔ device and kernel executions in **multiple command queues**.

To wait on host side until all queued commands have been completed, use `clFinish(command queue)`.
To summarize,

- GPUs provide **high degrees of parallelism** that can be programmed using a **high-level language**.

But:

- GPUs are not simply “multi-core processors.”
- Unleashing their performance requires significant efforts and great care for details.

Also note that

- GPUs provide lots of **Giga-FLOPS**.
  → But rather few applications really need raw GFLOPS.