
GPU-accelerated Data Management
Data Processing on Modern Hardware

Sebastian Breß
TU Dortmund University
Databases and Information Systems Group

Summer Term 2014

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Motivation

Graphics Processing Unit: Architecture

GPU-accelerated Database Operators

Outlook

Sebastian Breß GPU-accelerated Data Management 1/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Motivation – Big Picture

• Big Data Analysis: Should we always scale out, e.g., use the
cloud to analyze our data?

Sebastian Breß GPU-accelerated Data Management 2/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Motivation – Big Picture

Taken from [Appuswamy et al., 2013]

Sebastian Breß GPU-accelerated Data Management 3/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Motivation – Big Picture

Taken from [Appuswamy et al., 2013]

• ≈ 50% of the job sizes are
smaller than 10 GB

• ≈ 80% of the job sizes are
smaller than 1 TB

→ A majority of big data analysis
jobs can be processed in one
scale up machine!

[Appuswamy et al., 2013]

Sebastian Breß GPU-accelerated Data Management 4/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Motivation – Big Picture

How to scale up a server?

Sebastian Breß GPU-accelerated Data Management 5/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Base Configuration

Sebastian Breß GPU-accelerated Data Management 6/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Scale Up: Add More CPUs

Sebastian Breß GPU-accelerated Data Management 7/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Scale Up: Add GPUs

PCI Express Bus

Sebastian Breß GPU-accelerated Data Management 8/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Focus of this Lecture Topic

How can we speed up database query
processing using GPUs?

Sebastian Breß GPU-accelerated Data Management 9/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Graphics Processing Unit:
Architecture

Sebastian Breß GPU-accelerated Data Management 10/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Recapitulation: The Central Processing Unit (CPU)

• General purpose processor

• Goal is low response time:
→ optimized to execute one task as fast as possible
(pipelining, branch prediction)

• Processes data dormant in the main memory

Sebastian Breß GPU-accelerated Data Management 11/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Graphics Processing Unit (1)

• Specialized processor, can be programmed similar to CPUs

• GPUs achieve high performance through massive parallelism
→ Problem should be easy to parallelize to gain most from
running on the GPU

• Single Instruction, Multiple Data (SIMD): Each
multiprocessor only has a single instruction decoder
→ Scalar processors execute the same instruction at a time

• Optimized for computation

Sebastian Breß GPU-accelerated Data Management 12/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Graphics Processing Unit (2)

 CPU
Memory

 GPU
Memory

 GPU

PCI Express bus

 CPU

Sebastian Breß GPU-accelerated Data Management 13/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Example: Fermi Architecture of NVIDIA

48uScalaruProcessors

M
e

m
o

ry
uC

o
n

tr
o

lle
r

OnxChipuShareduMemory
64kB

1uTB.s

In
st

ru
ct

io
n

uD
e

co
d

e
r

7uM
ulti

pro
ce

ss
ors

121uGB.s

GPU

DeviceuMemory
2GB

GDDR5

GraphicsuCardHostuSystem

CPU

MainuMemory
~30GB
DDR3

8uGB.s

x16u

PCIExpress

u2E1uBus

3x
10E57uGB.s

Picture taken from [Breß et al., 2013b]

Sebastian Breß GPU-accelerated Data Management 14/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

GPU Performance Pitfalls

Data transfers between host and device:

• One of the most important performance factors in GPU
programming
→ All data has to pass across the PCIexpress bus
→ bottleneck

• Limited memory capacity (1 to 16GB)
→ Efficient memory management necessary

→ GPU algorithm can be faster than its CPU counterpart
[Gregg and Hazelwood, 2011]

Sebastian Breß GPU-accelerated Data Management 15/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Summary: CPU vs. GPU

CPU is likely to be better if

• Algorithm needs much control flow or cannot be parallelized

• Data set is relatively small or exceeds capacity of GPU RAM

GPU is likely to be better if

• Algorithm can be parallelized and need moderate control flow

• Data set is relatively large but still fits in the GPU RAM

Rule of Thumb:

• Use CPU for little and GPU for large datasets

Sebastian Breß GPU-accelerated Data Management 16/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Graphics Processing Unit:
Programming Model

Sebastian Breß GPU-accelerated Data Management 17/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

How to program a GPU? (1)

GPUs are programmed using the kernel programming model.

Kernel:

• Is a simplistic program

• Forms the basic unit of parallelism

• Scheduled concurrently on several scalar processors in a SIMD
fashion → Each kernel invocation (thread) executes the same
code on its own share of the input

Workgroup:

• Logically grouping of all threads running on the same
multiprocessor

Sebastian Breß GPU-accelerated Data Management 18/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

How to program a GPU? (2)

Host Code:

• Executed on the CPU

• Manages all processing on the GPU

Device Code:

• The kernel, is the GPU program

• Executed massively parallel on the GPU

• General limitations: no dynamic memory allocation, no
recursion

Sebastian Breß GPU-accelerated Data Management 19/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Processing Data on a GPU: Basic Structure

1. CPU instructs to copy all data needed for a computation from
the RAM to the GPU RAM

2. CPU launches the GPU kernel

3. CPU instructs to copy the result data back to CPU RAM

Sebastian Breß GPU-accelerated Data Management 20/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Processing Data on a GPU: Basic Structure (2)

• CPU may wait (synchronous kernel launch) or perform other
computations (asynchronous kernel launch) while the kernel is
running

• GPU executes the kernel in parallel

• GPU can only process data located in its memory
→ Manual data placement using special APIs

Sebastian Breß GPU-accelerated Data Management 21/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Frameworks for GPU Programming

Compute Unified Device Architecture (CUDA):

• NVIDIA’s Architecture for parallel computations

• Program GPUs in CUDA C using the CUDA Toolkit

Open Computing Language (OpenCL):

• Open Standard

• Targets parallel programming of heterogeneous systems

• Runs on a broad range of hardware (CPUs or GPUs)

Sebastian Breß GPU-accelerated Data Management 22/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Graphics Processing Unit: General
Problems for Data Processing

Sebastian Breß GPU-accelerated Data Management 23/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

GPU-accelerated DBMS: General Problems

1. Data placement strategy

2. Predicting the benefit of GPU acceleration

3. Force in-memory database

4. Increased complexity of query optimization

[Breß et al., 2013b]

Sebastian Breß GPU-accelerated Data Management 24/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Data placement strategy

Problem:

• Data transfer between CPU and GPU is the main bottleneck

• GPU memory capacity limited → database does not fit in
GPU RAM

Data placement:

• GPU-accelerated databases try to keep relational data cached
on the device to avoid data transfer

• Only possible for a subset of the data

• Data placement strategy: Deciding which part of the data
should be offloaded to the GPU
→ Difficult problem that currently remains unsolved

Sebastian Breß GPU-accelerated Data Management 25/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Predicting the benefit of GPU acceleration

• Operators may generate a large result

• Often unfit for GPU-offloading

• Result size of an operation is typically not known before
execution (estimation errors propagate through the query
plan, estimation is typically bad for operations near the root)

→ Predicting whether a given operator will benefit from the GPU
is a hard problem

Sebastian Breß GPU-accelerated Data Management 26/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Force in-memory database

• GPU-accelerated operators are of little use, when most time is
spent on disk I/O

• Time savings will be small compared to the total query
runtime

• GPU improves performance only once the data is in main
memory

• Disk-resident databases are typically very large, making it
harder to find an optimal data placement strategy

Sebastian Breß GPU-accelerated Data Management 27/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Increased complexity of query optimization

Option of running operations on a GPU increases the complexity of
query optimization:

• The plan search space is drastically larger

• Require cost function that compares run-times across
architectures

• GPU-aware query optimization remains an open challenge

Sebastian Breß GPU-accelerated Data Management 28/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Graphics Processing Unit:
Architectural Considerations for

DBMS

Sebastian Breß GPU-accelerated Data Management 29/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Row Stores vs. Column Stores

Store a Table row wise:

Magdeburg 20102341Guinness

Ilmenau 20104944Pinot Noir

Ilmenau 20105543Merlot

Magdeburg 20104325Merlot

Ort JahrUmsatzProdukt
Store a Table column wise:

Magdeburg

Ilmenau
Ilmenau

Magdeburg
Ort

2010

2010
2010

2010
Jahr

2341

4944
5543

4325
Umsatz

Guinness

Pinot Noir
Merlot

Merlot
Produkt

Sebastian Breß GPU-accelerated Data Management 30/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Row Stores vs. Column Stores

A column store is more suitable for a GPU-accelerated DBMS than
a row store.
Column stores:

• Allow for coalesced memory access on the GPU

• Achieve higher compression rates, an important property
considering the current memory limitations of GPUs

• Reduce the volume of data that needs to be transfered to
GPU RAM

Sebastian Breß GPU-accelerated Data Management 31/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Processing Model

There are basically two alternative processing models that are used
in modern DBMS:

• Tuple-at-a-time volcano model [Graefe, 1990]

• Operator requests next tuple, processes it, and passes it to the
next operator

• Operator-at-a-time bulk processing [Manegold et al., 2009]

• Operator consumes its input and materializes its output

Sebastian Breß GPU-accelerated Data Management 32/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Tuple-at-a-time processing

Advantages:

• Intermediate results are very small

• Pipelining parallelism

• The ”classic” approach

Disadvantages:

• A higher per tuple processing overhead

• High miss rate in the instruction cache

Sebastian Breß GPU-accelerated Data Management 33/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Operator-at-a-time Processing

Advantages:

• Cache friendly memory access patterns
→ Making effective usage of the memory hierarchy
[Manegold et al., 2009]

• Parallelism inside an operator, multiple cores used for
processing a single operation
→ Intra-operator parallelism

Disadvantages:

• Increased memory requirement, since intermediate results are
materialized [Manegold et al., 2009]

• No pipeline parallelism

Sebastian Breß GPU-accelerated Data Management 34/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Processing Model for GPU-aware DBMS

Operator-at-a-time processing is more promising than
tuple-at-a-time processing, because:

• Data can be most efficiently transfered over the PCIe bus by
using large memory chunks

• Tuple-wise processing is not possible on the GPU, because
inter-kernel communication is undefined [NVIDIA, 2012] → No
pipelining possible

• Operator-at-a-time processing can be easily combined with
operator-wise scheduling

Sebastian Breß GPU-accelerated Data Management 35/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

GPU-accelerated Database Operators

Sebastian Breß GPU-accelerated Data Management 36/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

State of the Art: GPUs in Databases

GPUs are utilized for accelerating query processing like:

• Relational operations
[Bakkum and Skadron, 2010, Diamos et al., 2012, Govindaraju et al., 2006, He et al., 2009,

He et al., 2008, He and Yu, 2011, Kaldewey et al., 2012, Pirk, 2012, Pirk et al., 2011, Pirk et al., 2012]

• XML path filtering [Moussalli et al., 2011]

• Online aggregation [Lauer et al., 2010]

• Compression [Andrzejewski and Wrembel, 2010, Fang et al., 2010]

• Scans [Beier et al., 2012]

GPUs are as well utilized for accelerating query optimization:
e.g., GPU based selectivity estimation
[Augustyn and Zederowski, 2012, Heimel and Markl, 2012]

Sebastian Breß GPU-accelerated Data Management 37/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Co-processoring in a DBMS

GPU Co-Processing in Database Systems

Query Processing Query Optimization Database Tasks

Relational Searching
XPath Selection

XML

Compression
Update Merging
in Column Stores
Transaction Management

Other
Online Aggregation
Sorting
Map Reduce

Selection
Projection

Join

Index Lookups
knn-Search
Range Queries

Selectivity Estimation

Figure: Classification of Co-Processing Approaches

[Breß et al., 2013a]

Sebastian Breß GPU-accelerated Data Management 38/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Selection

Choose a subset of elements from a relation R satisfying a
predicate and discard the rest:

1
5
3
7
2
4

val

1
3
2
4

res

pred: val<5

algorithm:
unsigned int i=0;
for(i=0;i<n;i++){
 if(pred(val[i]))
 res.add(val[i]);
}

Sebastian Breß GPU-accelerated Data Management 39/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Selection

How to parallelize a selection efficiently?

Points to consider:

• Concurrent writes may corrupt data structures
→ Usually, correctness is ensured by locks

• Locks may serialize your threads and nullify the performance
gained by parallel execution
→ We need a way to ensure correctness and consistency
without using locks

→ pre-compute write locations

Sebastian Breß GPU-accelerated Data Management 40/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Prefix Scans

• Important building block for parallel programs

• Applies a binary operator to an array

• Example: prefix sum

• Given an input array Rin, Rout is computed as follows:
Rout [i] = Rin[0] + . . . + Rin[i − 1] (1 ≤ i < |Rin|)
Rout [0] = 0

[He et al., 2009]

Sebastian Breß GPU-accelerated Data Management 41/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Example: Prefix Sum

1
0
1
0
1
1

Rin

0
1
1
2
2
3

Rout

Sebastian Breß GPU-accelerated Data Management 42/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Parallel Selection

• Create an array flags of the same size as R and init with zeros

• For each tuple set corresponding flag in flags if and only if the
current tuple matches the predicate
→ flags array contains a 1 if the corresponding tuple in R is
part of the result
→ The sum of the values in flags is the number of result
tuples #rt

• Compute the prefix sum of flags and store it in array ps
→ Now we have the write locations for each tuple in the
result buffer

[He et al., 2009]

Sebastian Breß GPU-accelerated Data Management 43/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Parallel Selection

• Create the result buffer res of size #rt

• Scan flags: if(flags[i]==1) write R[i] to position ps[i] in the
result buffer:

1 do in parallel:

2 for(unsigned int i=0;i<n;i++){

3 if(flags[i]==1){

4 unsigned int res_write_index=ps[i];

5 res[res_write_index]=R[i];

6 }

7 }

[He et al., 2009]

Sebastian Breß GPU-accelerated Data Management 44/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Parallel Selection: Example

1
5
3
7
2
4

val

1
0
1
0
1
1

flags

0
1
1
2
2
3

ps

1
3
2
4

res

build flag array:
if(pred(val[i]))
 flags[i]=1;
else
 flags[i]=0;

compute
prefix sum
from flags

scan flags and
write val[i] to
position ps[i]
in result array

Sebastian Breß GPU-accelerated Data Management 45/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Joins

• Non Indexed Nested Loop Join

• Indexed Nested Loop Join

• Sort Merge Join

• Hash Join

We will not discuss the individual parallelism strategies, but we
focus on the common problems here!

Sebastian Breß GPU-accelerated Data Management 46/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Joins

General Problems:

• Exact result size not known in advance
(exception: primary-key/foreign-key join)

• Join result may or may not fit in GPU RAM

• Need lock free processing to fully exploit parallelism of GPU
→ Pre-compute write locations for each thread

Sebastian Breß GPU-accelerated Data Management 47/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Joins

Joins use a three-step output scheme:

1. Each thread counts the number of join partners for its share
of the input

2. Using the result size for each thread, we compute a prefix
sum, to get the write location for each thread

3. The host allocates the memory of the size of the join result
and all threads write their results to the device memory
according to the their write locations

→ lock free processing scheme

[He et al., 2009]

Sebastian Breß GPU-accelerated Data Management 48/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Outlook

Sebastian Breß GPU-accelerated Data Management 49/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Hybrid Query Processing Engine

Hybrid Query Processing Engine (HyPE):

• Distributes database operations response time minimal on
CPU/GPU

• Tries to utilize the processing device most suited for an
operation while keeping track of the load situation
[Breß et al., 2012c, Breß et al., 2012a, Breß et al., 2012d, Breß et al., 2012b, Breß et al., 2013a]

Sebastian Breß GPU-accelerated Data Management 50/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

CoGaDB

CogaDB (Column Oriented GPU accelerated DBMS):

• Designed as In-Memory Column Store

• Basis for investigating different query optimization strategies
[Breß et al., 2012d]

• Prototype for advanced co-processing techniques for
column-oriented DBMS [Breß et al., 2013b]

Sebastian Breß GPU-accelerated Data Management 51/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Open Research Questions:

• How can GPU-acceleration be integrated in column stores,
and – in particular – how should an efficient data-placement
and query optimization strategy for a GPU-aware DBMS look
like?

• Which parts of a database engine should be
hardware-conscious (fine-tuned to a particular architecture),
and which parts should be hardware-oblivious (implemented in
a general framework like OpenCL, that can be mapped to
multiple architectures at runtime)?

[Breß et al., 2013b]

Sebastian Breß GPU-accelerated Data Management 52/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Open Research Questions:

• How does the performance differ when comparing
distributed-query-processing approaches with tailor-made
approaches for hybrid CPU/GPU systems?

• What is a suitable transaction protocol that ensures ACID
properties over all (co-)processors?

• Is it feasible to include GPU-acceleration in an existing DBMS
by changing the architecture successively (e.g., Ocelot) or are
the necessary changes on DBMS architecture and software so
invasive and expensive that a rewrite from scratch is necessary
(e.g., CoGaDB)?

[Breß et al., 2013b]

Sebastian Breß GPU-accelerated Data Management 53/55

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Invitation

Your are invited to join our research on GPU-accelerated
data management, e.g., in form of:

• Bachelor or master thesis

• Student assistant (Hilfswissenschaftler)

Contact: Sebastian Breß
(sebastian.bress@cs.tu-dortmund.de)

Sebastian Breß GPU-accelerated Data Management 54/55

sebastian.bress@cs.tu-dortmund.de

Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

Thank you for your attention!

Are there any questions or
suggestions?

Sebastian Breß GPU-accelerated Data Management 55/55

References I

Andrzejewski, W. and Wrembel, R. (2010).

GPU-WAH: Applying GPUs to Compressing Bitmap Indexes with Word Aligned Hybrid.
In DEXA (2), pages 315–329.

Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson, O., and Rowstron, A. (2013).

Nobody ever got fired for buying a cluster.
Technical Report MSR-TR-2013-2, Microsoft Research, Cambridge, UK.

Augustyn, D. R. and Zederowski, S. (2012).

Applying CUDA Technology in DCT-Based Method of Query Selectivity Estimation.
In GID, pages 3–12. Springer.

Bakkum, P. and Skadron, K. (2010).

Accelerating SQL database operations on a GPU with CUDA.
In GPGPU, pages 94–103. ACM.

Beier, F., Kilias, T., and Sattler, K.-U. (2012).

GiST Scan Acceleration using Coprocessors.
In DaMoN, pages 63–69. ACM.

Breß, S., Beier, F., Rauhe, H., Sattler, K.-U., Schallehn, E., and Saake, G. (2013a).

Efficient co-processor utilization in database query processing.
Information Systems, 38(8):1084–1096.
http://dx.doi.org/10.1016/j.is.2013.05.004.

Sebastian Breß GPU-accelerated Data Management 56/55

References II

Breß, S., Beier, F., Rauhe, H., Schallehn, E., Sattler, K.-U., and Saake, G. (2012a).

Automatic Selection of Processing Units for Coprocessing in Databases.
In ADBIS, pages 57–70. Springer.

Breß, S., Geist, I., Schallehn, E., Mory, M., and Saake, G. (2012b).

A framework for cost based optimization of hybrid cpu/gpu query plans in database systems.
Control and Cybernetics, 41(4):715–742.

Breß, S., Heimel, M., Siegmund, N., Bellatreche, L., and Saake, G. (2013b).

Exploring the design space of a GPU-aware database architecture.
In ADBIS workshop on GPUs In Databases (GID), pages 225–234. Springer.

Breß, S., Mohammad, S., and Schallehn, E. (2012c).

Self-Tuning Distribution of DB-Operations on Hybrid CPU/GPU Platforms.
In GvD, pages 89–94. CEUR-WS.

Breß, S., Schallehn, E., and Geist, I. (2012d).

Towards Optimization of Hybrid CPU/GPU Query Plans in Database Systems.
In GID, pages 27–35. Springer.

Diamos, G., Wu, H., Lele, A., Wang, J., and Yalamanchili, S. (2012).

Efficient Relational Algebra Algorithms and Data Structures for GPU.
Technical report, Center for Experimental Research in Computer Systems (CERS).

Sebastian Breß GPU-accelerated Data Management 57/55

References III

Fang, W., He, B., and Luo, Q. (2010).

Database Compression on Graphics Processors.
PVLDB, 3:670–680.

Govindaraju, N., Gray, J., Kumar, R., and Manocha, D. (2006).

GPUTeraSort: High Performance Graphics Coprocessor Sorting for Large Database Management.
In SIGMOD, pages 325–336. ACM.

Graefe, G. (1990).

Encapsulation of parallelism in the volcano query processing system.
In SIGMOD, pages 102–111. ACM.

Gregg, C. and Hazelwood, K. (2011).

Where is the data? Why You Cannot Debate CPU vs. GPU Performance without the Answer.
In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS ’11, pages 134–144. IEEE.

He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N. K., Luo, Q., and Sander, P. V. (2009).

Relational Query Coprocessing on Graphics Processors.
ACM Trans. Database Syst., 34:21:1–21:39.

He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., and Sander, P. (2008).

Relational Joins on Graphics Processors.
In SIGMOD, pages 511–524. ACM.

Sebastian Breß GPU-accelerated Data Management 58/55

References IV

He, B. and Yu, J. X. (2011).

High-Throughput Transaction Executions on Graphics Processors.
PVLDB, 4(5):314–325.

Heimel, M. and Markl, V. (2012).

A First Step Towards GPU-assisted Query Optimization.
In ADMS.

Kaldewey, T., Lohman, G., Mueller, R., and Volk, P. (2012).

GPU Join Processing Revisited.
In DaMoN, pages 55–62. ACM.

Lauer, T., Datta, A., Khadikov, Z., and Anselm, C. (2010).

Exploring Graphics Processing Units as Parallel Coprocessors for Online Aggregation.
In DOLAP, pages 77–84. ACM.

Manegold, S., Kersten, M. L., and Boncz, P. (2009).

Database architecture evolution: Mammals flourished long before dinosaurs became extinct.
PVLDB, 2(2):1648–1653.

Moussalli, R., Halstead, R., Salloum, M., Najjar, W., and Tsotras, V. J. (2011).

Efficient XML Path Filtering Using GPUs.
In ADMS.

Sebastian Breß GPU-accelerated Data Management 59/55

References V

NVIDIA (2012).

NVIDIA CUDA C Programming Guide.
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_

Guide.pdf.
pp. 30–34, Version 4.0, [Online; accessed 1-May-2012].

Pirk, H. (2012).

Efficient Cross-Device Query Processing.
Proceedings of the VLDB Endowment.

Pirk, H., Manegold, S., and Kersten, M. (2011).

Accelerating Foreign-Key Joins using Asymmetric Memory Channels.
In ADMS, pages 585–597. VLDB Endowment.

Pirk, H., Sellam, T., Manegold, S., and Kersten, M. (2012).

X-Device Query Processing by Bitwise Distribution.
In DaMoN, pages 48–54. ACM.

Sebastian Breß GPU-accelerated Data Management 60/55

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

	Motivation
	Graphics Processing Unit: Architecture
	CPUs
	GPU Architecture
	Programming Model
	General Problems
	General Problems

	GPU-accelerated Database Operators
	Selections
	Joins

	Outlook
	Appendix

