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Motivation – Big Picture

• Big Data Analysis: Should we always scale out, e.g., use the
cloud to analyze our data?
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Taken from [Appuswamy et al., 2013]
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Motivation – Big Picture

Taken from [Appuswamy et al., 2013]

• ≈ 50% of the job sizes are
smaller than 10 GB

• ≈ 80% of the job sizes are
smaller than 1 TB

→ A majority of big data analysis
jobs can be processed in one
scale up machine!

[Appuswamy et al., 2013]
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Motivation – Big Picture

How to scale up a server?
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Base Configuration
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Scale Up: Add More CPUs
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Scale Up: Add GPUs

PCI Express Bus
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Focus of this Lecture Topic

How can we speed up database query
processing using GPUs?
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Graphics Processing Unit:
Architecture
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Recapitulation: The Central Processing Unit (CPU)

• General purpose processor

• Goal is low response time:
→ optimized to execute one task as fast as possible
(pipelining, branch prediction)

• Processes data dormant in the main memory
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Graphics Processing Unit (1)

• Specialized processor, can be programmed similar to CPUs

• GPUs achieve high performance through massive parallelism
→ Problem should be easy to parallelize to gain most from
running on the GPU

• Single Instruction, Multiple Data (SIMD): Each
multiprocessor only has a single instruction decoder
→ Scalar processors execute the same instruction at a time

• Optimized for computation
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Graphics Processing Unit (2)

   CPU
Memory

   GPU
Memory

   GPU

PCI Express bus

   CPU
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Example: Fermi Architecture of NVIDIA
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Picture taken from [Breß et al., 2013b]
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GPU Performance Pitfalls

Data transfers between host and device:

• One of the most important performance factors in GPU
programming
→ All data has to pass across the PCIexpress bus
→ bottleneck

• Limited memory capacity (1 to 16GB)
→ Efficient memory management necessary

→ GPU algorithm can be faster than its CPU counterpart
[Gregg and Hazelwood, 2011]
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Summary: CPU vs. GPU

CPU is likely to be better if

• Algorithm needs much control flow or cannot be parallelized

• Data set is relatively small or exceeds capacity of GPU RAM

GPU is likely to be better if

• Algorithm can be parallelized and need moderate control flow

• Data set is relatively large but still fits in the GPU RAM

Rule of Thumb:

• Use CPU for little and GPU for large datasets
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Graphics Processing Unit:
Programming Model
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How to program a GPU? (1)

GPUs are programmed using the kernel programming model.

Kernel:

• Is a simplistic program

• Forms the basic unit of parallelism

• Scheduled concurrently on several scalar processors in a SIMD
fashion → Each kernel invocation (thread) executes the same
code on its own share of the input

Workgroup:

• Logically grouping of all threads running on the same
multiprocessor
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How to program a GPU? (2)

Host Code:

• Executed on the CPU

• Manages all processing on the GPU

Device Code:

• The kernel, is the GPU program

• Executed massively parallel on the GPU

• General limitations: no dynamic memory allocation, no
recursion
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Processing Data on a GPU: Basic Structure

1. CPU instructs to copy all data needed for a computation from
the RAM to the GPU RAM

2. CPU launches the GPU kernel

3. CPU instructs to copy the result data back to CPU RAM
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Processing Data on a GPU: Basic Structure (2)

• CPU may wait (synchronous kernel launch) or perform other
computations (asynchronous kernel launch) while the kernel is
running

• GPU executes the kernel in parallel

• GPU can only process data located in its memory
→ Manual data placement using special APIs
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Frameworks for GPU Programming

Compute Unified Device Architecture (CUDA):

• NVIDIA’s Architecture for parallel computations

• Program GPUs in CUDA C using the CUDA Toolkit

Open Computing Language (OpenCL):

• Open Standard

• Targets parallel programming of heterogeneous systems

• Runs on a broad range of hardware (CPUs or GPUs)
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Graphics Processing Unit: General
Problems for Data Processing

Sebastian Breß GPU-accelerated Data Management 23/55



Motivation
Graphics Processing Unit: Architecture
GPU-accelerated Database Operators
Outlook

GPU-accelerated DBMS: General Problems

1. Data placement strategy

2. Predicting the benefit of GPU acceleration

3. Force in-memory database

4. Increased complexity of query optimization

[Breß et al., 2013b]
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Data placement strategy

Problem:

• Data transfer between CPU and GPU is the main bottleneck

• GPU memory capacity limited → database does not fit in
GPU RAM

Data placement:

• GPU-accelerated databases try to keep relational data cached
on the device to avoid data transfer

• Only possible for a subset of the data

• Data placement strategy: Deciding which part of the data
should be offloaded to the GPU
→ Difficult problem that currently remains unsolved
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Predicting the benefit of GPU acceleration

• Operators may generate a large result

• Often unfit for GPU-offloading

• Result size of an operation is typically not known before
execution (estimation errors propagate through the query
plan, estimation is typically bad for operations near the root)

→ Predicting whether a given operator will benefit from the GPU
is a hard problem
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Force in-memory database

• GPU-accelerated operators are of little use, when most time is
spent on disk I/O

• Time savings will be small compared to the total query
runtime

• GPU improves performance only once the data is in main
memory

• Disk-resident databases are typically very large, making it
harder to find an optimal data placement strategy
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Increased complexity of query optimization

Option of running operations on a GPU increases the complexity of
query optimization:

• The plan search space is drastically larger

• Require cost function that compares run-times across
architectures

• GPU-aware query optimization remains an open challenge
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Graphics Processing Unit:
Architectural Considerations for

DBMS
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Row Stores vs. Column Stores

Store a Table row wise:

Magdeburg 20102341Guinness

Ilmenau 20104944Pinot Noir

Ilmenau 20105543Merlot

Magdeburg 20104325Merlot

Ort JahrUmsatzProdukt
Store a Table column wise:
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2010

2010
2010
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4944
5543
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Produkt
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Row Stores vs. Column Stores

A column store is more suitable for a GPU-accelerated DBMS than
a row store.
Column stores:

• Allow for coalesced memory access on the GPU

• Achieve higher compression rates, an important property
considering the current memory limitations of GPUs

• Reduce the volume of data that needs to be transfered to
GPU RAM
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Processing Model

There are basically two alternative processing models that are used
in modern DBMS:

• Tuple-at-a-time volcano model [Graefe, 1990]

• Operator requests next tuple, processes it, and passes it to the
next operator

• Operator-at-a-time bulk processing [Manegold et al., 2009]

• Operator consumes its input and materializes its output
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Tuple-at-a-time processing

Advantages:

• Intermediate results are very small

• Pipelining parallelism

• The ”classic” approach

Disadvantages:

• A higher per tuple processing overhead

• High miss rate in the instruction cache
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Operator-at-a-time Processing

Advantages:

• Cache friendly memory access patterns
→ Making effective usage of the memory hierarchy
[Manegold et al., 2009]

• Parallelism inside an operator, multiple cores used for
processing a single operation
→ Intra-operator parallelism

Disadvantages:

• Increased memory requirement, since intermediate results are
materialized [Manegold et al., 2009]

• No pipeline parallelism
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Processing Model for GPU-aware DBMS

Operator-at-a-time processing is more promising than
tuple-at-a-time processing, because:

• Data can be most efficiently transfered over the PCIe bus by
using large memory chunks

• Tuple-wise processing is not possible on the GPU, because
inter-kernel communication is undefined [NVIDIA, 2012] → No
pipelining possible

• Operator-at-a-time processing can be easily combined with
operator-wise scheduling
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GPU-accelerated Database Operators
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State of the Art: GPUs in Databases

GPUs are utilized for accelerating query processing like:

• Relational operations
[Bakkum and Skadron, 2010, Diamos et al., 2012, Govindaraju et al., 2006, He et al., 2009,

He et al., 2008, He and Yu, 2011, Kaldewey et al., 2012, Pirk, 2012, Pirk et al., 2011, Pirk et al., 2012]

• XML path filtering [Moussalli et al., 2011]

• Online aggregation [Lauer et al., 2010]

• Compression [Andrzejewski and Wrembel, 2010, Fang et al., 2010]

• Scans [Beier et al., 2012]

GPUs are as well utilized for accelerating query optimization:
e.g., GPU based selectivity estimation
[Augustyn and Zederowski, 2012, Heimel and Markl, 2012]
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Co-processoring in a DBMS

GPU Co-Processing in Database Systems

Query Processing Query Optimization Database Tasks

Relational Searching
XPath Selection

XML

Compression
Update Merging
in Column Stores
Transaction Management

Other
Online Aggregation 
Sorting
Map Reduce

Selection
Projection

Join

Index Lookups
knn-Search
Range Queries

Selectivity Estimation

Figure: Classification of Co-Processing Approaches

[Breß et al., 2013a]
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Selection

Choose a subset of elements from a relation R satisfying a
predicate and discard the rest:

1
5
3
7
2
4

val

1
3
2
4

res

pred: val<5

algorithm:
unsigned int i=0;
for(i=0;i<n;i++){
    if(pred(val[i]))
        res.add(val[i]);
}
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Selection

How to parallelize a selection efficiently?

Points to consider:

• Concurrent writes may corrupt data structures
→ Usually, correctness is ensured by locks

• Locks may serialize your threads and nullify the performance
gained by parallel execution
→ We need a way to ensure correctness and consistency
without using locks

→ pre-compute write locations
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Prefix Scans

• Important building block for parallel programs

• Applies a binary operator to an array

• Example: prefix sum

• Given an input array Rin, Rout is computed as follows:
Rout [i ] = Rin[0] + . . . + Rin[i − 1] (1 ≤ i < |Rin|)
Rout [0] = 0

[He et al., 2009]
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Example: Prefix Sum

1
0
1
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1
1

Rin

0
1
1
2
2
3

Rout
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Parallel Selection

• Create an array flags of the same size as R and init with zeros

• For each tuple set corresponding flag in flags if and only if the
current tuple matches the predicate
→ flags array contains a 1 if the corresponding tuple in R is
part of the result
→ The sum of the values in flags is the number of result
tuples #rt

• Compute the prefix sum of flags and store it in array ps
→ Now we have the write locations for each tuple in the
result buffer

[He et al., 2009]
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Parallel Selection

• Create the result buffer res of size #rt

• Scan flags: if(flags[i]==1) write R[i] to position ps[i] in the
result buffer:

1 do in parallel:

2 for(unsigned int i=0;i<n;i++){

3 if(flags[i]==1){

4 unsigned int res_write_index=ps[i];

5 res[res_write_index]=R[i];

6 }

7 }

[He et al., 2009]
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Parallel Selection: Example

1
5
3
7
2
4

val

1
0
1
0
1
1

flags

0
1
1
2
2
3

ps

1
3
2
4

res

build flag array:
if(pred(val[i]))
    flags[i]=1;
else
    flags[i]=0;

compute 
prefix sum
from flags

scan flags and 
write val[i] to 
position ps[i] 
in result array 
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Joins

• Non Indexed Nested Loop Join

• Indexed Nested Loop Join

• Sort Merge Join

• Hash Join

We will not discuss the individual parallelism strategies, but we
focus on the common problems here!
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Joins

General Problems:

• Exact result size not known in advance
(exception: primary-key/foreign-key join)

• Join result may or may not fit in GPU RAM

• Need lock free processing to fully exploit parallelism of GPU
→ Pre-compute write locations for each thread
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Joins

Joins use a three-step output scheme:

1. Each thread counts the number of join partners for its share
of the input

2. Using the result size for each thread, we compute a prefix
sum, to get the write location for each thread

3. The host allocates the memory of the size of the join result
and all threads write their results to the device memory
according to the their write locations

→ lock free processing scheme

[He et al., 2009]
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Outlook
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Hybrid Query Processing Engine

Hybrid Query Processing Engine (HyPE):

• Distributes database operations response time minimal on
CPU/GPU

• Tries to utilize the processing device most suited for an
operation while keeping track of the load situation
[Breß et al., 2012c, Breß et al., 2012a, Breß et al., 2012d, Breß et al., 2012b, Breß et al., 2013a]
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CoGaDB

CogaDB (Column Oriented GPU accelerated DBMS):

• Designed as In-Memory Column Store

• Basis for investigating different query optimization strategies
[Breß et al., 2012d]

• Prototype for advanced co-processing techniques for
column-oriented DBMS [Breß et al., 2013b]
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Open Research Questions:

• How can GPU-acceleration be integrated in column stores,
and – in particular – how should an efficient data-placement
and query optimization strategy for a GPU-aware DBMS look
like?

• Which parts of a database engine should be
hardware-conscious (fine-tuned to a particular architecture),
and which parts should be hardware-oblivious (implemented in
a general framework like OpenCL, that can be mapped to
multiple architectures at runtime)?

[Breß et al., 2013b]
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Open Research Questions:

• How does the performance differ when comparing
distributed-query-processing approaches with tailor-made
approaches for hybrid CPU/GPU systems?

• What is a suitable transaction protocol that ensures ACID
properties over all (co-)processors?

• Is it feasible to include GPU-acceleration in an existing DBMS
by changing the architecture successively (e.g., Ocelot) or are
the necessary changes on DBMS architecture and software so
invasive and expensive that a rewrite from scratch is necessary
(e.g., CoGaDB)?

[Breß et al., 2013b]
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Invitation

Your are invited to join our research on GPU-accelerated
data management, e.g., in form of:

• Bachelor or master thesis

• Student assistant (Hilfswissenschaftler)

Contact: Sebastian Breß
(sebastian.bress@cs.tu-dortmund.de)
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Thank you for your attention!

Are there any questions or
suggestions?
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