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Part VII

FPGAs for Data Processing
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Motivation

Modern hardware features a number of “speed-up tricks”:

caches,

instruction scheduling (out-of-order exec., branch prediction, . . . ),

parallelism (SIMD, multi-core),

throughput-oriented designs (GPUs).

Combining these “tricks” is essentially an economic choice:

→ chip space ≡ eee
→ chip space ↔ component selection ↔ workload
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Another Constraint: Power

Can use transistors for either logic or caches.
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cessor-performance scaling faces new 
challenges (see Table 1) precluding 
use of energy-inefficient microarchi-
tecture innovations developed over the 
past two decades. Further, chip archi-
tects must face these challenges with 
an ongoing industry expectation of a 
30x performance increase in the next 
decade and 1,000x increase by 2030 
(see Table 2). 

As the transistor scales, supply 
voltage scales down, and the thresh-
old voltage of the transistor (when 
the transistor starts conducting) also 
scales down. But the transistor is not 
a perfect switch, leaking some small 
amount of current when turned off, 
increasing exponentially with reduc-
tion in the threshold voltage. In ad-
dition, the exponentially increasing 
transistor-integration capacity exacer-
bates the effect; as a result, a substan-
tial portion of power consumption is 
due to leakage. To keep leakage under 
control, the threshold voltage cannot 
be lowered further and, indeed, must 
increase, reducing transistor perfor-
mance.10 

As transistors have reached atomic 
dimensions, lithography and variabil-
ity pose further scaling challenges, af-
fecting supply-voltage scaling.11 With 
limited supply-voltage scaling, energy 
and power reduction is limited, ad-
versely affecting further integration 
of transistors. Therefore, transistor-
integration capacity will continue with 
scaling, though with limited perfor-
mance and power benefit. The chal-
lenge for chip architects is to use this 
integration capacity to continue to im-
prove performance. 

Package power/total energy con-
sumption limits number of logic tran-
sistors. If chip architects simply add 
more cores as transistor-integration 
capacity becomes available and oper-
ate the chips at the highest frequen-
cy the transistors and designs can 
achieve, then the power consumption 
of the chips would be prohibitive (see 
Figure 7). Chip architects must limit 
frequency and number of cores to keep 
power within reasonable bounds, but 
doing so severely limits improvement 
in microprocessor performance. 

Consider the transistor-integration 
capacity affordable in a given power 
envelope for reasonable die size. For 
regular desktop applications the pow-

er envelope is around 65 watts, and 
the die size is around 100mm2. Figure 
8 outlines a simple analysis for 45nm 
process technology node; the x-axis is 
the number of logic transistors inte-
grated on the die, and the two y-axes 
are the amount of cache that would fit 
and the power the die would consume. 
As the number of logic transistors on 
the die increases (x-axis), the size of the 
cache decreases, and power dissipa-
tion increases. This analysis assumes 
average activity factor for logic and 

cache observed in today’s micropro-
cessors. If the die integrates no logic at 
all, then the entire die could be popu-
lated with about 16MB of cache and 
consume less than 10 watts of power, 
since caches consume less power than 
logic (Case A). On the other hand, if it 
integrates no cache at all, then it could 
integrate 75 million transistors for log-
ic, consuming almost 90 watts of pow-
er (Case B). For 65 watts, the die could 
integrate 50 million transistors for 
logic and about 6MB of cache (Case C). 

Traditional wisdom suggests investing maximum transistors in the 90% case, with 
the goal of using precious transistors to increase single-thread performance that can 
be applied broadly. In the new scaling regime typified by slow transistor performance 
and energy improvement, it often makes no sense to add transistors to a single core 
as energy efficiency suffers. Using additional transistors to build more cores produces 
a limited benefit—increased performance for applications with thread parallelism. 
In this world, 90/10 optimization no longer applies. Instead, optimizing with an 
accelerator for a 10% case, then another for a different 10% case, then another 10% 
case can often produce a system with better overall energy efficiency and performance. 
We call this “10×10 optimization,”14 as the goal is to attack performance as a set of 
10% optimization opportunities—a different way of thinking about transistor cost, 
operating the chip with 10% of the transistors active—90% inactive, but a different 10% 
at each point in time. 

Historically, transistors on a chip were expensive due to the associated design  
effort, validation and testing, and ultimately manufacturing cost. But 20 generations  
of Moore’s Law and advances in design and validation have shifted the balance. 
Building systems where the 10% of the transistors that can operate within the energy 
budget are configured optimally (an accelerator well-suited to the application) may  
well be the right solution. The choice of 10 cases is illustrative, and a 5×5, 7×7, 10×10,  
or 12×12 architecture might be appropriate for a particular design. 

Death of  
90/10 Optimization,  
Rise of  
10×10 Optimization

Figure 8. Transistor integration capacity at a fixed power envelope. 
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→ Power consumptions limits amount of logic that can be put on chip.
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Heterogeneous Hardware
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This design point matches the dual-
core microprocessor on 45nm technol-
ogy (Core2 Duo), integrating two cores 
of 25 million transistors each and 6MB 
of cache in a die area of about 100mm2. 

If this analysis is performed for fu-
ture technologies, assuming (our best 
estimates) modest frequency increase 
15% per generation, 5% reduction in 
supply voltage, and 25% reduction of 

capacitance, then the results will be 
as they appear in Table 1. Note that 
over the next 10 years we expect in-
creased total transistor count, follow-
ing Moore’s Law, but logic transistors 
increase by only 3x and cache transis-
tors increase more than 10x. Apply-
ing Pollack’s Rule, a single processor 
core with 150 million transistors will 
provide only about 2.5x microarchitec-
ture performance improvement over 
today’s 25-million-transistor core, 
well shy of our 30x goal, while 80MB of 
cache is probably more than enough 
for the cores (see Table 3). 

The reality of a finite (essentially 
fixed) energy budget for a microproces-
sor must produce a qualitative shift in 
how chip architects think about archi-
tecture and implementation. First, en-
ergy-efficiency is a key metric for these 
designs. Second, energy-proportional 
computing must be the ultimate goal 
for both hardware architecture and 
software-application design. While 
this ambition is noted in macro-scale 
computing in large-scale data cen-
ters,5 the idea of micro-scale energy-
proportional computing in micropro-
cessors is even more challenging. For 
microprocessors operating within a 
finite energy budget, energy efficiency 
corresponds directly to higher perfor-
mance, so the quest for extreme energy 
efficiency is the ultimate driver for per-
formance. 

In the following sections, we out-
line key challenges and sketch poten-
tial approaches. In many cases, the 
challenges are well known and the 
subject of significant research over 
many years. In all cases, they remain 
critical but daunting for the future of 
microprocessor performance: 

Organizing the logic: Multiple cores 
and customization. The historic mea-
sure of microprocessor capability is 
the single-thread performance of a 
traditional core. Many researchers 
have observed that single-thread per-
formance has already leveled off, with 
only modest increases expected in the 
coming decades. Multiple cores and 
customization will be the major driv-
ers for future microprocessor perfor-
mance (total chip performance). Mul-
tiple cores can increase computational 
throughput (such as a 1x–4x increase 
could result from four cores), and cus-
tomization can reduce execution la-

Figure 9. Three scenarios for integrating 150-million logic transistors into cores. 
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Figure 10. A system-on-a-chip from Texas Instruments. 
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Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are yet-another point in

the design space.

“Programmable hardware.”

Make (some) design decisions after chip fabrication.

Promises of FPGA technology:

; Build application-/workload-specific circuit.

; Spend chip space only on functionality that you really need.

; Tune for throughput, latency, energy consumption, . . .

; Overcome limits of general-purpose hardware with regard to task at

hand (e.g., I/O limits).
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Field-Programmable Gate Arrays

An array of logic gates

Functionality fully

programmable

Re-programmable after

deployment (“in the field”)

→ “programmable hardware”

FPGAs can be configured to implement any logic circuit.

Complexity bound by available chip space.

→ Obviously, the effective chip space is less than in

custom-fabricated chips (ASICs).
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Basic FPGA Architecture
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Signal Routing

programmable
Switch Box and

bundle of lines
programmable

intersection
point

SRAM
cell

programmable
switch with
memory cell
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Configurable Logic Block (CLB)

in0
in1
in2
in3

SRAM
cell

4-LUT

D

Flip
Flop

clock

SRAM
cell

Multiplexer

out

implements
{0, 1}4 → {0, 1}

function

stores a
single bit
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Programming FPGAs

Programming is usually done using a hardware description language.

E.g., VHDL6, Verilog

High-level circuit description

Circuit description is compiled into a bitstream, then loaded into SRAM

cells on the FPGA:

VHDL synthesis map place & route FPGA

netlist bitstream

6VHSIC Hardware Description language
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Example: VHDL

HDLs enable programming language-like descriptions of hardware circuits.

architecture Behavioral of compare is

begin

process (A, B)

begin

if ( A = B ) then

C <= ’1’;

else

C <= ’0’;

end if;

end process;

end Behavioral;

VHDL can be synthesized, but also executed in software (simulation).
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Real-World Hardware

CPU 0 CPU 1

Simplified Virtex-5

XC5VFXxxxT floor plan

Frequently used high-level

components are provided in

discrete silicon

BlockRAM (BRAM): set of

blocks that each store up

36 kbits of data

DSP48 slices: 25x18-bit

multipliers followed by a 48-bit

accumulator

CPU: two full embedded

PowerPC 440 cores
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Development Board with Virtex-5 FPGA

source: Xilinx Inc., ML50x Evaluation Platform. User Guide.

Virtex-5

XC5VLX110T

Lookup Tables (LUTs) 69,120

Block RAM (kbit) 5,328

DSP48 Slices 64

PowerPC Cores 0

max. clock speed ≈ 450 MHz

release year 2006

� Low-level speed of configurable gates is slower than in

custom-fabricated chips (clock frequencies: ∼ 100 MHz).

→ Compensate with efficient circuit for problem at hand.
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State Machines

The key asset of FPGAs is their inherent parallelism.

Chip areas naturally operate independently and in parallel.

For example, consider finite-state automata.

q0 q1 q2 q3 q4

a

*

b c d

*

→ non-deterministic automaton for .*abc.*d
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State Machines

�How would you implement an automaton in software?

Problems with state machine implementations in software:

In non-deterministic automata, several states can be active at a

time, which requires iterative execution on sequential hardware.

Deterministic automata avoid this problem at the expense of a

significantly higher state count.
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State Machines in Hardware

Automata can be translated mechanically into hardware circuits.

each state → flip-flop

(A flip-flop holds a single bit of information. Just the right amount to keep

the ‘active’/‘not active’ information.)

transitions:

→ signals (“wires”) between states

conditioned on current input symbol (; ‘and’ gate)

multiple sources for one flip-flop input → ‘or’ gate.
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State Machines in Hardware

q0 q1 q2 q3 q4

a

*

b c d

*

FF

q0

FF
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FF
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FF
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FF

q4
or and

input
?
= a

and

input
?
= b

and

input
?
= c

or and

input
?
= d
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Use Case: Network Intrusion Detection

Analyze network traffic using regular expressions.

Scan for known attack tools.

Prevent exploitation of known security holes.

Scan for shell code.

E.g., Snort (http://www.snort.org/)

→ Hundreds of (regular expression-based) rules.

Idea: Instantiate a hardware state machine for each rule.

→ Leverage available hardware parallelism.

→ Challenge: optimize for high throughput.
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Predicate Decoding

Optimization 1: Centralized character classification

decod.
a

d

FF

q0

FF

q1

FF

q2

FF

q3

FF

q4
or and

a

and

b

and

c

or and

d

→ Optimizes for space, not for speed.

Character/predicate decoder:

Use FPGA logic resources or

use on-chip BRAM (configure as ROM and use as lookup table).
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Predicate Decoding Factored Out
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Signal Propagation Delay

Signal propagation delays determine a circuit’s speed.

Here: One state transition per clock cycle.

Longest signal path → maximum clock frequency

CLK

rising clock edge

reg. input

stable at

rising clock
may be undefined

in-between

reg. output

register written

at rising clock
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Propagation Delays and Many State Machines

Straightforward design with many rules and one input:

NFA 1 NFA 2 NFA 3 NFA 4 NFA 5 NFA 6

input

or
output
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Pipelining

Optimization 2: Pipelining

→ What matters is longest path between any two registers (flip-flops).

NFA 1 NFA 2 NFA 3 NFA 4 NFA 5 NFA 6

input

or
output

longest path

→ Introduce pipeline registers.

→ � Flip side of the idea?
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Pipelining in Practice

Figure 8: Centralized character classification for 6
different REMEs.

When constructing the centralized character classification,
a function is called to examine and compare each state’s
character class to the character class entries collected in
BRAM so far. If the character class of the current state is
new, then a new entry (column of 256 bits) is added to the
character classification BRAM; if it was old, then a proper
connection is made from the BRAM output of the previous
character class entry to the input of the current state.

The time complexity of this procedure is O (n× w), where
n is the total number of states in all REMEs, and w is
the number of distinct character classes among the n states.
The space complexity is just 256× w. In the worst case, w
could be linear in n; in practice, however, we find w tends to
grow much more slowly than O (logn). Note that prudently
grouping REMEs can greatly help (slow down) the growth
of w with respect to n.

An illustration of the technique is shown in Figure 8. Here
a centralized block memory of character classes is shared by
6 different REMEs, preferably with many states matching
the same character classes.

4.3 Staging and Pipelining
A common issue of most RE-NFA implementations on

FPGA is the decline in achievable clock frequency with larger
numbers of REMEs, supposedly due to the more compli-
cated routing the synthesis and implementation software
have to perform. This is especially true with techniques
such as centralized character classification where a single
character matching output can be used in many disparate
states.

In our implementation we use an aggressive staging and
pipelining structure to improve the clock rate. An example
structure for 16 different REMEs is shown in Figure 9. As
shown in the figure, the 16 REMEs are first divided into
2 pipelines; each pipeline is further divided into 2 stages.
Every input character goes to a pipeline in the first clock
cycle, then forwarded to the next pipeline in the next clock
cycle. Within a pipeline, all the REMEs share the same
centralized character classification, whose output is buffered
at every stage in the pipeline.

Matching outputs of all REMEs are prioritized, with lower-
indexed pipelines and lower-indexed stages having higher
priority. Within a stage, matching outputs from different
REMEs are priority-encoded into a single value of logN
bits, N being the number of REMEs in the stage (2-bit in
the example of Figure 9). The encoded matching output is
buffered to the next stages and pipelines in the same way as
the input character classifications. This allows for a single
matching output from all 16 of REMEs at any clock cycle.

One drawback of this aggressive staging and pipelining
is that there is a latency from the clock cycle when a last

Figure 9: Structure of a staged pipeline for 16 dif-
ferent REMEs.

“matching character” is sent to the chip to the cycle when
the “matching found” signal is asserted by the chip. For a
structure of p pipelines and s stages per pipeline, the latency
is a fixed p+s clock cycles. We argue that, since this latency
is fixed, it does not impact our ability to find exactly on
which character the matching occurs.

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of the pro-

posed architecture. We first define a set of metrics in Sec-
tion 5.1, to describe the complexity of an REME more ac-
curately in Section 5.2. We then study the proposed ar-
chitecture in Section 5.3 and compare our results with the
state-of-the-art in Section 5.4.

5.1 Hardware Complexity of Regular Expres-
sions

The one point that we must stress on here is that all reg-
ular expressions are not created equal when implemented
on hardware. Thus, when measuring the efficiency of a
RE-NFA architecture, it is very important to keep in mind
the types and complexities of the regular expressions being
implemented. We define the following metrics to quantify
the complexity of regular expressions when implemented as
hardware matching engines:2

State count - Total number of states needed by the regular
expression matching engine (REME).

State fan-in - maximum number of states that can imme-
diately transition to any state in the REME.

State fan-out - maximum number of states to which any
state in the REME can immediately transition .

Loop size - total number of transitions within a loop of
state transitions.

Branch-size delta - difference in number of transitions be-
tween two state transition paths with the same first
and final states.

2The character sets to be matched at each state can also
affect logic and routing complexity. Circuits for complex
character sets take more logic to implement, while character
sets matched at disparate states require longer signal routes.
This problem is eliminated in our architecture by prudent
use of block memory and pipelining.
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Multi-Character Matching

In a finite state automaton, the state si+1 at step i + 1 depends on

the previous state si ,

the input symbol σi , and

a transition function f :

si+1 = f (si , σi) .

Consequently:

si+2 = f (si+1, σi+1) = f (f (si , σi), σi+1) .

That is, with help of a new transition function

F (si , σi , σi+1)
def
= f (f (si , σi), σi+1) ,

an automaton can accept two input symbols per clock cycle.
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Multi-Character Encoding

In hardware:

statef

input

stateff

input (2 characters)

Trade-off: space ↔ performance

�
longer signal paths
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Putting it Together (Snort Workload)

Figure 10: Throughput scaling of 760 REMEs
on Virtex 4 LX-100-12. Squares (left scale) are
throughput; triangles (right scale) are resource us-
age ratios.

As discussed in Section 5.1, a state fan-out of 1 means the
regular expression contains neither union nor Kleene clo-
sure (although it can still contain complex character classes).
The number of regular expressions with state fan-in being
1 was less than those with state fan-out being 1, because
in our implementations, the extra state fan-in produced by
a Kleene closure on the first state of a regular expression
(mostly in Snort chat category) could be safely ignored.

5.3 Implementation Results
To measure the performance of the “760-REME” (as in

Table 1) circuit, we implemented it as 1- to 3-character in-
put circuits and replicated the circuits 1 to 3 times on a
single Virtex 4 LX-100-12 device. The idea was is to see
how we could achieve higher throughput using increasingly
more resources. The result is shown in Figure 10. The high-
est throughput was 14.4 Gbps, aggregated over 3 copies of
m = 2 circuits.

There are two points to observe in this graph. First,
multi-character input offers a viable way to scale through-
put with fewer resources relative to circuit replication. The
is evidenced by comparing m = 1 (x3) and m = 2 (x2) test
cases (2nd and 3rd to the left, respectively), where scaling
with multi-character input in the latter case not only ob-
tains higher throughput but also uses fewer resources than
scaling with only circuit replication.

To study the effect of multi-character input more closely,
we implemented the “267-REME” set and scale m up to 8.
We used the smaller set here only because 760-REME would
take too may resources when implemented with m > 4. The
results are in Figures 11 and 12. A few points to note about
these graphs:

1. Comparing Figure 11 to Figure 10, the 267-REME tests
achieve higher concurrent throughputs while using fewer
resources than the 760-REME tests. This is expected
since the 760-REME tests do almost 3x more work in
parallel.

2. Figure 11 shows resource usage increases almost lin-
early with higher m-character inputs. However, con-
current throughput increases sub-linearly due to re-

Figure 11: Throughput of 267 REMEs on Virtex
4 LX-100-12 vs. different m-character input sizes.
Squares (left scale) are throughput; triangles (right
scale) are resource usage ratios.

Figure 12: Clock rate and LUT usage of 267 REMEs
on Virtex 4 LX-100-12. Squares (left scale) are clock
rate; triangles (right scale) are LUT usage in thou-
sands.

duced clock frequencies at higher m values (see Item 4
below).

3. BRAM usage increases linearly with every two incre-
ments of m, because each dual-port block memory can
serve the matching results of two input characters. The
use of centralized character classification allows BRAM
to stay underutilized in all cases.

4. In Figure 12, the clock frequency can be well approx-
imated by 440 MHz/ (1 + 0.10 log4m+ 0.20m), where
the 440 MHz in the numerator approximates the fastest
switching frequency of a Virtex-4 LX device of speed
grade −12, and the 0.10 log4m and 0.20m in the de-
nominator account for the additional gate and trans-
mission delays, respectively. The clock frequency at
m = 1 is limited by BRAM access and is excluded
from the regression calculation.

In Item 4 above, it can be inferred that the “logic only” fre-
quency without BRAM access is roughly 440/ (1 + 0.2) =

37
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(Virtex-4 LX100; ≈ 100k 4-LUTs; ≈ 100k flip-flops)
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Use Case: XML Projection

Example:

for $i in //regions//item

return <item>

{ $i/name }

<num-categories>

{ count ($i/incategory) }

</num-categories>

</item>

Projection paths:

{ //regions//item,

//regions//item/name #

keep descendants

,

//regions//item/incategory }

Challenge: Avoid explicit synthesis for each query.
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Advantage: FPGA System Integration

Here: In-network filtering

server XML FPGA
filtered XML

client

In general: FPGA in the data path.

disk → CPU

memory → CPU

. . .
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XPath → Finite State Automata

Automaton for //a/b/c//d:

q0 q1 q2 q3 q4

a

*

b c d

*

In hardware: (see also earlier slides)

tag

decod.

a

d

XML

FF

q0

FF

q1

FF

q2

FF

q3

FF

q4
or and

a

and

b

and

c

or and

d

root()/desc:: a/child:: b/child:: c/desc:: d
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Compilation to Hardware

/a//b

a

*

b

FPGA

XPath Hardware FSM bitstream

� several hours!
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Skeleton Automaton

Separate the difficult parts from the latency-critical

. . .

⊥

a

*

b

�

�

FPGA

XPath

spec.

. . .

�

�

�

�

�

�

skeleton

user query

/a//b

. . .

⊥

a

*

b

configuration param.

static part (off-line)

dynamic part (runtime)
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Skeleton Automaton

Thus: Build skeleton automaton that can be parameterized to

implement any projection query.

XML

parser

skeleton

segment

seg1

. . .
skeleton

segment

segn

seria-

lizer

RAM

XML filtered

XML

“cooked XML”

skeleton automaton (NFA)

Intuitively:

Runtime-configuration determines presence of * .
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Again: Pipelining

seg0 seg1 seg2 seg3 seg4 seg5start

input stream

seg0 seg1 seg2 seg3 seg4 seg5start

input str.

pipeline registers

→ Side effect: Can support self and descendant-or-self axes.
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Scalability
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number of segment matchers n

no BRAM sharing
2-way BRAM sharing
3-way BRAM sharing
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Application Speedup

20 40

0

2

4
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16
parse time
execution time
memory cons.

im
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t
/

sp
ee

d
u

p

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

XMark query

↗ Jens Teubner, Louis Woods, and Chongling Nie. Skeleton Automata for

FPGAs: Reconfiguring without Reconstructing. SIGMOD 2012.
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Skyline Queries

Problem:

Pareto-optimal set of

multi-dimensional data points.

x dominates y (x ≺ y) iff for

every dimension i : xi ≤ yi and

for at least one dimension j :

xj < yj .

Skyline points: all y not

dominated by any x .

p1

p2

p3

p4 p5

p6

p7

→ Parallelize, keep on-chip routing distance short
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“Lemming’s Got Talent”

→ Lemmings have multiple skills (dimension)

→ Determine “best” Lemmings

Let Lemmings battle on a narrow bridge:

qi dominated

p0qi+1 requeue

queue

p0 dominates qi → qi falls off the bridge.

qi dominates p0 → p0 falls off bridge, qi becomes new p0

Battle undecided → let qi requeue.

A Lemming that has survived a full round is a “skyline Lemming.”
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“Lemming’s Got Talent”—Second Year

To speed up the process, let a set of pi stay on bridge:

qi dominated

[p0, pw−1]qi+1 requeue

queue

→ Challengers qi fight against multiple pj in turn.

→ qi and/or multiple pj might fall off the bridge.

→ Keep surviving qi on bridge if there is space, otherwise requeue.

→ Standard algorithm Block Nested Loops (BNL).

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 278



1 foreach Lemming qi ∈ queue do

2 isDominated = false;

3 foreach Lemming pj ∈ bridge do

4 if qi .timestamp > pj .timestamp then

5 bridge.movetoskyline(pj); /* pj ∈ Lemming skyline */
6 else if qi ≺ pj then

7 bridge.drop(pj);

8 else if pj ≺ qi then

9 isDominated = true;

10 break;

11 if not isDominated then

12 timestamp(qi);

13 if bridge.isFull() then

14 queue.insert(qi);

15 else

16 bridge.insert(qi);



Block Nested Loops Algorithm

Design goal of BNL: Eliminate I/O Bottleneck

0 4 8 16 32 64 128 256
106

107

108

109

106

107

108

109

overflow tuples comparisons

window size [ # of tuples ]

co
m

p
ar

is
o

n
s

o
ve

rfl
o

w
tu

p
le

s

→ Compute load remains (mostly) unchanged.
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“Lemming’s Got Talent”—Third Year

Let multiple (pairs of) Lemmings battle in parallel.

pk
qj

queue

q(i+w−1) requeue

Challengers qi move from left to right.

Potential skyline Lemmings pj move from right to left.

Either can fall off the cliff if dominated.

On the right end, challengers become potential skyline Lemmings (if

there is space on the bridge), otherwise they requeue.
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Parallel BNL with FPGAs

Parallel battles can be realized on distinct processing nodes νi .

? ?

node νn node νm

qk qi
· · ·

Nodes form a list where νj only communicates with νj−1 and νj+1.

→ Challengers qi forwarded from left to right.

→ Potential skyline tuples forwarded from right to left.

Effectively, qi scans over current window (as in BNL).

Trick: Causality still holds. qi “sees” effect of any preceding

challenger, but not of any following challenger.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 282



Implementation

Let all νi operate in lock-step.7

Process in two alternating phases:

1 Evaluate: Compute dominance; drop tuples if need be.

2 Shift: Exchange data (“Lemmings”) between nodes.

In practice, exchanging tuples is more tricky. For high dimensionality

data can be passed only one dimension at a time.

M ′

1
2
3
0

3′

1
2
3
1

2′

1
2
3
2

1′

1
2
3
3

M

1
2
3
4

3

1
2
3
5

2

1
2
3
6

1

1
2
3
7

7We tried to avoid this when we did “handshake joins” on multi-core hardware,

because of the high synchronization cost. But on FPGAs this is really cheap.
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Experiments

Randomly distributed data; seven dimensions (1.48 % skyline density).
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Experiments

Correlated data; seven dimensions (0.013 % skyline density).
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→ FPGA bottlenecked by the memory interface of the particular

FPGA board.
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Experiments

Anti-Correlated data; seven dimensions (19.8 % skyline density).
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→ Benefit of FPGA solution is greatest when it is most needed (i.e.,

when running times are very high).
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The Frequent Item Problem

Problem:

Given an input stream S , which items in S occur most often?

Exact solution too expensive (O(min{|S |, |A|}) space)

Good approximate solutions available.

Space-Saving by Metwally et al.

In-depth study: Cormode and Hadjieleftheriou (VLDB 2008)
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Space-Saving (Metwally et al., TODS 2006)

Space-Saving tries to “monitor” only items that are frequent.

1 foreach stream item x ∈ S do

2 find bin bx with bx .item = x

lookup by item

;

3 if such a bin was found then

4 bx .count ← bx .count + 1 ;

5 else

6 bmin ← bin with minimum count value

lookup by count

;

7 bmin.count ← bmin.count + 1 ;

8 bmin.item ← x ;

Main complexity:

Look up bin that monitors the input item x .

Find bin with minimum count value.
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Space-Saving in Software
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Code by Cormode and Hadjieleftheriou, Intel Core2 Duo, 2.66 GHz
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Data-Parallel Frequent Item on FPGAs

Idea: Use available (data) parallelism to make searches efficient.

Perform all item searches in parallel:

input item xi

bin b0 bin b1 bin b2 bin b3 bin b4

?
=

Find bin with minimum count using a tree:

min

min

min

· · · · · ·
min

· · · · · ·

min

min

· · · · · ·
min

· · · · · ·

tree for 8 bins
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Evaluation
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Problem: Increasing signal propagation delays.

Teubner, Müller, and Alonso. FPGA Acceleration for the Frequent Item Problem. ICDE 2010.

c© Jens Teubner · Data Processing on Modern Hardware · Summer 2014 291



Don’t Think in Software

Organize monitored items as an array (→ keep things local).

item
count bi−1

· · · item
count bi

x1

item
count bi+1

x1

item
count bi+2

· · ·

bi .item
?
= x1

bi .count
?
< bi+1.count

1 Compare input item x1 to content of bin bi
(and increment count value if a match was found).

2 Order bins bi and bi+1 according to count values.

3 Move x1 forward in the array and repeat.

→ Drop x1 into last bin if no match can be found.
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Pipelining

The idea seems terribly inefficient: O (# bins) vs. O (log(# bins)).

But:

All sub-tasks are simple, all processing stays local.

Thus, the processing of multiple input items can be parallelized.

item
count bi−1

x2

· · · item
count bi

item
count bi+1

x1

item
count bi+2

· · ·

bi+1.item
?
= x1bi−1.item

?
= x2

bi+1.count
?
< bi+2.countbi−1.count

?
< bi .count

Multiple input items xi can traverse this pipeline if they keep

sufficient distance.
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Algorithm

1 foreach stream item x ∈ S do

2 i ← 1 ;

3 while i < k do

4 if bi .item = x then

5 bi .count ← bi .count + 1 ;

6 continue foreach ;

7 else if bi .count < bi+1.count then

8 swap contents of bi and bi+1 ;

9 else

10 i ← i + 1 ;

/* replace last bin if x was not found */

11 bk .count ← bk .count + 1 ;

12 bk .item ← x ;
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Evaluation
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Teubner, Müller, and Alonso. FPGA Acceleration for the Frequent Item Problem. ICDE 2010.
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