Data Processing on Modern Hardware

Jens Teubner, TU Dortmund, DBIS Group

jens.teubner@cs.tu-dortmund.de

Summer 2014

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Part VII

FPGAs for Data Processing

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Modern hardware features a number of “speed-up tricks”:
m caches,
m instruction scheduling (out-of-order exec., branch prediction, ...),
m parallelism (SIMD, multi-core),
m throughput-oriented designs (GPUs).

Combining these “tricks” is essentially an economic choice:
— chip space = €€€
— chip space <+ component selection <+ workload

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Another Constraint: Power

m Can use transistors for either logic or caches.

-
S

R

2008, 45nm, 100mm? %

100 18 8
——> Case A, 16MB of Cache . —| g

80 |— ' | g

E \-\- ?o\Ne(14 §
§ — 12 s
= | Cs, = o
5 60 Che S S caseC B = s
g 50MT Logic @ 5
a 6MB Cache 13 5 ©
T 40 |— 8 3
s < L
[> 16)
<+ 2

. =

20 — .
—>) k5

1 7 Case A, 0 Logic, 8W | S

a | | | °

0 (o]

0 20 40 60 CGSE‘BT 80 ks

o

Logic Transistors (Millions) c.ﬂ,

¢

. 3

— Power consumptions limits amount of logic that can be put on chip. &

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Heterogeneous Hardware

Large-Core Large-Core
25 MT 25MT

Large-Core Homogeneous Small-Core Homogeneous Small-Core Homogeneous
Large-core 1 Large-core Large-core 1
throughput throughput throughput

Small-core Small-core Pollack’s Rule Small-core Pollack's Rule
throughput throughput (5/25)°°=0.45 throughput (5/25)°°=0.45
Total 6 Total 13 Total 11
throughput throughput throughput

(a) (b) (c)

©) Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are yet-another point in
the design space.

m “Programmable hardware.”
m Make (some) design decisions after chip fabrication.

Promises of FPGA technology:

~ Build application-/workload-specific circuit.

~» Spend chip space only on functionality that you really need.
~» Tune for throughput, latency, energy consumption, ...
~s

Overcome limits of general-purpose hardware with regard to task at
hand (e.g., 1/O limits).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Field-Programmable Gate Arrays

m An array of logic gates

m Functionality fully
programmable

m Re-programmable after
deployment (“in the field")

— “programmable hardware”

m FPGAs can be configured to implement any logic circuit.
m Complexity bound by available chip space.

— Obviously, the effective chip space is less than in
custom-fabricated chips (ASICs).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Basic FPGA Architecture

IOB|IOB|IOBDCMIOB|IOB|IOB m chip layout: 2D array
0B E E E E IOB| m Compconentcs] |
OB OB m CLB: Configurable Logic Block
cLB || cie| cu8 | cLe (“logic gates”)
I0B [0 m |OB: Input/Output Block
OB E E E E 0B m DCM: Digital Clock Manager
0B E E E E os| ™ Interconnect Network
m signal lines
IOB|IOB|IOBPCMIOB|IOB|IOB m configurable switch boxes

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Signal Routing

programmable
Switch Box and
bundle of lines

DR R ER=
|

|
) ()| I | I
—] 0 T)
LB ENE

programmable

intersection
point

programmable
switch with
memory cell

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Configurable Logic Block (CLB)

NN
NEEEES
[D D " \‘ D L ce cel
DDN\D ing — L out
||| :2;] D Multiplexer
[T L] L VI S S
4-LUT ,
clock Flip
Flop
implements
{O, 1}4 N {0’ 1} s_tores a
function single bit

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Programming FPGAs

Programming is usually done using a hardware description language.
m E.g., VHDL®, Verilog

m High-level circuit description

Circuit description is compiled into a bitstream, then loaded into SRAM

cells on the FPGA:
map }—>’ place & route }T>

netlist bitstream

NN RENRNRENI

FPGA

VHDL %’ synthesis }—>

A

AR
TTTTTTT

TTTTTTTTTTTTT

5VHSIC Hardware Description language

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Example: VHDL

HDLs enable programming language-like descriptions of hardware circuits.

architecture Behavioral of compare is

begin
process (A, B)
begin
if (A =B) then
C <=1’
else
C <="07;
end if;

end process;
end Behavioral;

VHDL can be synthesized, but also executed in software (simulation).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Real-World Hardware

m Simplified Virtex-5

D%%D%%D%}D%%D%%D XC5VFXxxxT floor plan

m Frequently used high-level
%%% %% % %% %%% components are provided in
il il) il i) discrete silicon
Q& 1= T m BlockRAM (BRAM): set of
%% CPU O % CPU 1 %% blocks that each store up
I imi e 36 kbits of data
%%% %% % ’%% %%% m DSP48 slices: 25x18-bit

multipliers followed by a 48-bit

pus| || slj=s]jEms o

OO0dooOoooooE e m CPU: two full embedded
PowerPC 440 cores

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Development Board with Virtex-5 FPGA

Virtex-5

XC5VLX110T
Lookup Tables (LUTSs) 69,120
Block RAM (kbit) 5,328
DSP48 Slices 64
PowerPC Cores 0
max. clock speed ~ 450 MHz
release year 2006

source: Xilinx Inc., ML50x Evaluation Platform. User Guide.

Low-level speed of configurable gates is slower than in
custom-fabricated chips (clock frequencies: ~ 100 MHz).
— Compensate with efficient circuit for problem at hand.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

State Machines

The key asset of FPGAs is their inherent parallelism.

m Chip areas naturally operate independently and in parallel.

For example, consider finite-state automata.
a b C d

— non-deterministic automaton for .*abc.*d

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

State Machines

% How would you implement an automaton in software?

Problems with state machine implementations in software:
m In non-deterministic automata, several states can be active at a
time, which requires iterative execution on sequential hardware.
m Deterministic automata avoid this problem at the expense of a
significantly higher state count.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

State Machines in Hardware

Automata can be translated mechanically into hardware circuits.
m cach state — flip-flop
(A flip-flop holds a single bit of information. Just the right amount to keep
the ‘active’/'not active' information.)
m transitions:
m — signals ("wires”) between states
m conditioned on current input symbol (~ ‘and’ gate)

m multiple sources for one flip-flop input — ‘or’ gate.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

State Machines in Hardware
a b C d

. ? . ? . ? . ?
Input = a Input =b Input =c¢ Input =d

do 0

B - and o and

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

NFA
DFA
DFA (compressed)

AR

Flip-flop cons. in %

NFA 1
DFA h
DFA (compressed) I

AR

LUT cons. in %

O = N W &+ O OO H N W b O

0 1 2 3 4 5 6 7 8 9 10
iin (0l1)*1(0l1)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Use Case: Network Intrusion Detection

Analyze network traffic using regular expressions.

m Scan for known attack tools.
m Prevent exploitation of known security holes.

m Scan for shell code.

E.g., Snort (http://www.snort.org/)

— Hundreds of (regular expression-based) rules.

Idea: Instantiate a hardware state machine for each rule.
— Leverage available hardware parallelism.
— Challenge: optimize for high throughput.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

http://www.snort.org/

Predicate Decoding

Optimization 1: Centralized character classification

a
— decod. :
d

do a1

D - and o and

— Optimizes for space, not for speed.

Character/predicate decoder:
m Use FPGA logic resources or

m use on-chip BRAM (configure as ROM and use as lookup table).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Predicate Decoding Factored Out

30

No decoder: With decoder:
25t —w— [UTs —&— LUTs
—a— Slices —a— Slices

=

c

.0

=

o 4

2 20

>

2 157

O

S 101

>

@]

¢ 51

o
0 f &
0 50 100 150 200 250

iin (AB)'

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Signal Propagation Delay

Signal propagation delays determine a circuit's speed.

m Here: One state transition per clock cycle.

m Longest signal path — maximum clock frequency

rising clock edge

stable at l

rising clock

may be ‘undefined
in-between

|

I

reg. input e e e

reg. output _ X_

X

X X

register written
at rising clock

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Propagation Delays and Many State Machines

Straightforward design with many rules and one input:

input

2
INFA 1| [NFA 2| [NFA 3| [NFA 4] [NFA 5| |NFA6]

output

K~

Pipelining

Optimization 2: Pipelining

— What matters is longest path between any two registers (flip-flops).

_ longest path
Input

| | | |

I NFA 1|J|NFA 2 ||| NFA 3|§ | NFR 4]} | NFA 5|

L

— Introduce pipeline registers.
— X Flip side of the idea?

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Pipelining in Practice

=menc/mbuf)—> match_out
RE5 [+ RE6 RE}3)— RIE}4

A
v v
A

0 0
0 [a)
o o
[C
—h —h

v
RE7 [RE8 RE15+RE16
menc/mbuf

RE1 '——‘ RE2

>

RE9 '—'—‘ RE10
A

3 7'y A
h 4 h 4 v v
RE3 '——‘ RE4 REllb— RE12

v

ch_in & CharCls_1 CharCls_2

Yang et al. Compact Architecture for High-Throughput
Regular Expression Maching on FPGA. ANCS 2008.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Multi-Character Matching

In a finite state automaton, the state s;;; at step / + 1 depends on
m the previous state s;,
m the input symbol o}, and

m a transition function f:
Si+1 = f(S,‘,O',') .
Consequently:
Sit2 = f(Sit1.0i41) = F(f(si, 07), 0it1) -
That is, with help of a new transition function
def
F(S,', o, O','+1) = f(f(S,', O','), 0'/+1))

an automaton can accept two input symbols per clock cycle.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Multi-Character Encoding

In hardware:
L f —— state J

1
input

|
Lf%f—wtatej

_____1 T
input (2 characters)

m Trade-off: space <> performance

[@ longer signal paths

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Putting it Together (Snort Workload)

768 REME throughput scaling

i)
o
O
e
S
> - Tput Gbps
o *¥-% Slice
) “Arop LUT
-8- > 9% BRAM
(D 0
5
£ »>
(2] . T .
8 _ .- . .. - P
; > >
0 \ \ \ 0

m=1(x2) m=1(x3) m=2(x2) m=3(x2) m=2(x3)

Yang et al. Compact Architecture for High-Throughput
Regular Expression Maching on FPGA. ANCS 2008.

(Virtex-4 LX100; ~ 100k 4-LUTs; ~ 100k flip-flops)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Use Case: XML Projection

Example:

for $i in //regions//item
return <item>
{ $i/name }
<num-categories>
{ count ($i/incategory) }
</num-categories>
</item>
Projection paths:
keep descendants
{ //regions//iten,
//regions//item/name #,
//regions//item/incategory }

Challenge: Avoid explicit synthesis for each query.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Advantage: FPGA System Integration

Here: In-network filtering

In general: FPGA in the data path.

m disk — CPU
m memory — CPU

[IEEENENEEENEEN]

filtered XML

FPGA |:{> client

[INNNNENNNENNEN]

TITTTTITTITITTT

TITTTTTTTTITTTT

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

XPath — Finite State Automata
Automaton for //a/b/c//4d:
a b c d
* *

In hardware: (see also earlier slides)

XML| tag 2 [T
it

decod. d

do a1 a2 g3 Aa

. b FE and Fr H and Fr H and D FE ht and e

root()/desc:: a/child:: b/child:: c/desc:: d

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Compilation to Hardware

XPath Hardware FSM bitstream

Ja//b —s OO 2 © [} BN

[)s

FPGA

@ several hours!

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Skeleton Automaton

Separate the difficult parts from the latency-critical

skeleton
[] [
XPath
spec. - . .
static part (off-line) O = O b O =
dynamic part (runtime) L * D
FPGA

a b
user query N ‘ O .
—

configuration param.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Skeleton Automaton

Thus: Build skeleton automaton that can be parameterized to
implement any projection query.

“cooked XML" RAM
| skel kel
XML| xmL | | Skereton skeleton seria- | filtered
— arser segment p» --- 3 segment lizer —
p seg, seg, XML

skeleton automaton (NFA)

Intuitively:

m Runtime-configuration determines presence of U* :

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Again: Pipelining

input stream

e 1 oom | oo | o 14

start—{ S€8o |~ 5€81 [S€8o | 83 L S€Z4 |4 S€Z5 |,

input str. :
[| [| [| 1 I

L : : : : ;
start—| S€8o Jli S€g1 JI: S€go JI: S€g3 i S€Z4 Jli S€g5 —L

pipeline registers

— Side effect: Can support self and descendant-or-self axes.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Scalability

200 : : : : : :
W
éwmm/e o |
o)
o
2 100 ¢+
g
< —=— no BRAM sharing
IS 01 o 2-way BRAM sharing
© —o— 3-way BRAM sharing
0 } } } } } }
0 100 200 300 400 500 600

number of segment matchers n

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Application Speedup

20 40
16
@ parse time

o 14 1 @ execution time
?.é 12 | @ memory cons.
& 101
~—
£ 8+
()
§ 67
3
= 4
£ 5

O i

QL Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QL0
XMark query

" Jens Teubner, Louis Woods, and Chongling Nie. Skeleton Automata for
FPGAs: Reconfiguring without Reconstructing. SIGMOD 2012.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Skyline Queries

Problem:

m Pareto-optimal set of
multi-dimensional data points.

m x dominates y (x < y) iff for
every dimension /: x; < y; and
for at least one dimension J:
xj < yj.

m Skyline points: all y not
dominated by any x.

— Parallelize, keep on-chip routing distance short

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

“Lemming’s Got Talent”

— Lemmings have multiple skills (dimension)

— Determine “best” Lemmings

Let Lemmings battle on a narrow bridge:

diy1, Po requeue
_

B9.%,99.9 Y S— X %

queue __~ 7

di 4. < dominated

m pp dominates g; — g, falls off the bridge.

m g; dominates pg — pg falls off bridge, g; becomes new pg

m Battle undecided — let g, requeue.

m A Lemming that has survived a full round is a “skyline Lemming.”

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

“Lemming’s Got Talent”—Second Year

To speed up the process, let a set of p; stay on bridge:

. [Po.Pw—l]
I3 ——thy gpspnss requene

queuve __~

di 4. < dominated

— Challengers g; fight against multiple p; in turn.
— @; and/or multiple p; might fall off the bridge.

— Keep surviving g; on bridge if there is space, otherwise requeue.

— Standard algorithm Block Nested Loops (BNL).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

o A W NN =

~N O

10

11
12
13
14

15
16

foreach Lemming g; € queue do
isDominated = false;
foreach Lemming p; € bridge do

| bridge.movetoskyline(p;);

else if g; < p; then
L bridge.drop(p;);
else if pj < g; then
isDominated = true;
break;

if not isDominated then
timestamp(q;);

if bridge.isFull() then
L queue.insert(g;);
else

| bridge.insert(g;);

if g;.timestamp > pj.timestamp then

/* p;j € Lemming skyline */

Block Nested Loops Algorithm

Design goal of BNL: Eliminate 1/0O Bottleneck

10° x x x x x x — 10°
—— overflow tuples —— comparisons

o o ————% wn
2 108 | L1083
(@] S
Ko} =i
:
7 7'
3 107 + - 10 o
o

106 106

0 4 8 16 32 64 128 256
window size [# of tuples]

— Compute load remains (mostly) unchanged.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

“Lemming’s Got Talent”—Third Year

Let multiple (pairs of) Lemmings battle in parallel.

Spapaa e B S8 e
queue A A NA A A A
Pk s~
9

m Challengers g; move from left to right.
m Potential skyline Lemmings p; move from right to left.
m Either can fall off the cliff if dominated.

m On the right end, challengers become potential skyline Lemmings (if
there is space on the bridge), otherwise they requeue.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Parallel BNL with FPGAs

Parallel battles can be realized on distinct processing nodes v;.

P
—

/@flk
- S

AN
il

node v,

“e e
«—

—_ |-
—

,»E]-‘lf\
- ~>

N
il

node v

—
H

m Nodes form a list where v; only communicates with v;_; and vj ;.

— Challengers g; forwarded from left to right.
— Potential skyline tuples forwarded from right to left.

m Effectively, g; scans over current window (as in BNL).

m Trick: Causality still holds. g; “sees” effect of any preceding
challenger, but not of any following challenger.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Implementation

m Let all v; operate in lock-step.’
m Process in two alternating phases:

Evaluate: Compute dominance; drop tuples if need be.
Shift: Exchange data (“Lemmings”) between nodes.

m In practice, exchanging tuples is more tricky. For high dimensionality
data can be passed only one dimension at a time.

\

A

Eﬂ----*

"We tried to avoid this when we did “handshake joins” on multi-core hardware,
because of the high synchronization cost. But on FPGAs this is really cheap.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Randomly distributed data; seven dimensions (1.48 % skyline density).

- 107 [T T T T T T T]
§ —e— BNL Software 2.28 M tuples/sec

E —= BNL FPGA 0.45 sec exec. time)
3 106]
s}

=

e

2 10° 0.23M tuples/;ec 3 |
o 4 .37 sec exec. time

S

0 4 8 16 32 64 128 256
window size

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Correlated data; seven dimensions (0.013 % skyline density).

T T T T T T T

[y
o
©
T
1

—e— BNL Software
—- BNL FPGA 41 M tuples/sec

108 L 25 ms exec. time
- CPU

- FPGA

17 M tuples/sec
61 ms exec. time

throughput [tuples/sec]

0 4 8 16 32 64 128 256
window size

— FPGA bottlenecked by the memory interface of the particular
FPGA board.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Anti-Correlated data; seven dimensions (19.8 % skyline density).

9105 L 32K tuples/sec i
L —o— BNL Software 32sec exec. time

k) —5- BNL FPGA —
2104 |]
4o

5

o

>

§ 103 | 1.8 K tuples/sec v 1
5 579 sec exec. time

0 4 8 16 32 64 128 256
window size

— Benefit of FPGA solution is greatest when it is most needed (i.e.,
when running times are very high).

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

The Frequent Item Problem

Problem:

Given an input stream S, which items in S occur most often?)

m Exact solution too expensive (O(min{|S|, |A|}) space)
m Good approximate solutions available.

m Space-Saving by Metwally et al.
m In-depth study: Cormode and Hadjieleftheriou (VLDB 2008)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Space-Saving (Metwally et al., TODS 2006)

Space-Saving tries to “monitor” only items that are frequent.

foreach stream item x € S do lookup by item

1

2 find bin by with by.item = x;
3 if such a bin was found then
4

L by.count < by.count + 1 ;

else lookup by count

5

6 bmin < bin with minimum count value
7 bmin-count < bpyj,.count + 1 ;

8 bmin.item < x ;

Main complexity:
m Look up bin that monitors the input item x.

® Find bin with minimum count value.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Space-Saving in Software

— 50
&

w40 ¢

£ z =00

2 z=2
5 301 data dependence |, _— T o
= z=15

E 201

-

>

o

S 10+ o

8 =) —]
o z=0

5 0 ’

16 32 64 128 256 512 1024
number of items monitored

m Code by Cormode and Hadjieleftheriou, Intel Core2 Duo, 2.66 GHz

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Data-Parallel Frequent Item on FPGAs

Idea: Use available (data) parallelism to make searches efficient.

Perform all item searches in parallel:

input item Xx;

A N

bin bp bin by bin bo bin b3 bin by

Find bin with minimum count using a tree:
min

min min tree for 8 bins

’min‘ ’min‘ ’min‘ ’min‘

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Evaluation

o 60 : : : = = | ;
(D)

(2]

~

(2] .

= parallel unit access

Q

2 404 software

c

0

E

=2 20+ +
o

e

(@]

S

o

p—

= 0 " " "

16 32 64 128 256 512 1024
number of items monitored / length of array

Problem: Increasing signal propagation delays.

Teubner, Miiller, and Alonso. FPGA Acceleration for the Frequent Item Problem. /CDE 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Don't Think in Software

m Organize monitored items as an array (— keep things local).

Co)

. ?
b;.item = xq
item item item item o
count |bj_1 count |b; count |bjt+1 count |bjto
A A
1

?
bj.count < bjyy.count

Compare input item x; to content of bin b,
(and increment count value if a match was found).

Order bins b; and b;;1 according to count values.

Move x; forward in the array and repeat.

— Drop x; into last bin if no match can be found.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Pipelining

The idea seems terribly inefficient: O (# bins) vs. O (log(# bins)).

But:
m All sub-tasks are simple, all processing stays local.

m Thus, the processing of multiple input items can be parallelized.

e O @ O

. . . ?
bi_1.item = xo bit1.item = xq
item item item item o
count |bj_1 count |b; count |bjt+1 count |bjto
A S S A
1 1
? ?
bj_1.count < bj.count bjy1.count < bjyo.count

m Multiple input items x; can traverse this pipeline if they keep
sufficient distance.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Algorithm

10

11
12

foreach stream item x € S do

[+ 1;
while / < k do
if b;.item = x then
b;.count < bj.count + 1 ;
L continue foreach ;

else if b;.count < bjy1.count then
L swap contents of b; and bj1 ;

else
L/<—/+1;

/* replace last bin if x was not found */
by.count < by.count + 1 ;

by.item +— x ;

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

Evaluation

100 : } } } } " "
pipeline
80+ = = = = = .- B+
60 + 1

parallel unit access
40 1 ’\‘\ software |

4 4 4
t t t

16 32 64 128 256 512 1024
number of items monitored / length of array

20 1

1

throughput [million items / sec]

(@]

Teubner, Miiller, and Alonso. FPGA Acceleration for the Frequent Item Problem. /CDE 2010.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014

	FPGAs for Data Processing
	Motivation: Chip Space Trade-Offs
	Field-Programmable Gate Arrays (FPGAs)
	FPGA Internals

	State Machines
	State Machines in Software
	State Machines in Hardware

	Use Case: Network Intrusion Detection
	Predicate Decoding
	Signal Propagation Delays
	Pipelining
	Multi-Character Encoding

	Use Case: XML Projection
	In-Network Filtering
	From Queries to Hardware
	Experiments

