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Hardware Trends
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Hardware Trends

There is an increasing gap between CPU and memory speeds.
m Also called the memory wall.

m CPUs spend much of their time waiting for memory.
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DRAM Characteristics

Dynamic RAM is comparably slow.
m Memory needs to be refreshed periodically (= every 64 ms).

m (Dis-)charging a capacitor takes time.

charge discharge

% charged

time
m DRAM cells must be addressed and capacitor outputs amplified.

Overall we're talking about &~ 200 CPU cycles per access.
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DRAM Characteristics

Under certain circumstances, DRAM can be reasonably fast.

m DRAM cells are physically organized as a 2-d array.
m The discharge/amplify process is done for an entire row.

m Once this is done, more than one word can be read out.

In addition,
m Several DRAM cells can be used in parallel.
— Read out even more words in parallel.

We can exploit that by using sequential access patterns.
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SRAM Characteristics

SRAM, by contrast, can be very fast.

m Transistors actively drive output lines, access almost instantaneous.

But:

m SRAMs are significantly more expensive (chip space = money)

Therefore:
m Organize memory as a hierarchy.

m Small, fast memories used as caches for slower memory.
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Memory Hierarchy

technology capacity latency
CPU SRAM bytes <1ns

L1 Cache] SRAM kilobytes ~1ns
_ SRAM megabytes <10ns

_ DRAM gigabytes 70-100ns

disk

m Some systems also use a 3rd level cache.
m cf. Architecture & Implementation course

— Caches resemble the buffer manager but are controlled by
hardware
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Principle of Locality

Caches take advantage of the principle of locality.
m 90 % execution time spent in 10 % of the code.

m The hot set of data often fits into caches.

Spatial Locality:
m Code often contains loops.

m Related data is often spatially close.

Temporal Locality:
m Code may call a function repeatedly, even if it is not spatially close.
m Programs tend to re-use data frequently.
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CPU Cache Internals

To guarantee speed, the overhead of caching must be kept reasonable.

01234567

m Organize cache in cache lines.

m Only load/evict full cache lines.

32IS aul|

m Typical cache line size: 64 bytes.

cache line

m The organization in cache lines is consistent with the principle of
(spatial) locality.

m Block-wise transfers are well-supported by DRAM chips.
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Memory Access

On every memory access, the CPU checks if the respective cache line is
already cached.

Cache Hit:

m Read data directly from the cache.

m No need to access lower-level memory.

Cache Miss:
m Read full cache line from lower-level memory.

m Evict some cached block and replace it by the newly read cache line.
m CPU stalls until data becomes available.?

2Modern CPUs support out-of-order execution and several in-flight cache misses.
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Block Placement: Fully Associative Cache

In a fully associative cache, a block can be loaded into any cache line.

01234567
m Offers freedom to block
replacement strategy.
m Does not scale to large
caches
— 4 MB cache,
line size: 64B: 1111111111222222222233

01234567890123456789012345678901

65,536 cache lines.

m Used, e.g., for small
TLB caches.
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Block Placement: Direct-Mapped Cache

In a direct-mapped cache, a block has only one place it can appear in

the cache.
01234567
place block 12
in cache line 4
m Much simpler to (4 =12mod 8)
implement.

m Easier to make fast.

1111111111222222222233

m Increases the chance of  1,34567800123456789012345678001

conflicts.
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Block Placement: Set-Associative Cache

A compromise are set-associative caches.

01234567
m Group cache lines into place block 12
sets. anywhere in set 0
m Each memory block (0 = 12 mod 4)
maps to one set. S S
0123

m Block can be placed

anvwhere within a set. 1111111111222222222233
y t 01234567890123456789012345678901

m Most processor caches
today are
set-associative.
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Effect of Cache Parameters
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Block Identification

A tag associated with each cache line identifies the memory block
currently held in this cache line.

[ —

status tag data

The tag can be derived from the memory address.

kS

byte address
tag |

N

set index | offset
block address ————!

ES
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Example: Intel Q6700 (Core 2 Quad)

m Total cache size: 4 MB (per 2 cores).
m Cache line size: 64 bytes.
— 6-bit offset (2° = 64)
— There are 65,536 cache lines in total (4 MB = 64 bytes).
m Associativity: 16-way set-associative.
— There are 4,096 sets (65,536 +~ 16 = 4,096).
— 12-bit set index (212 = 4,096).
m Maximum physical address space: 64 GB.

— 36 address bits are enough (230 bytes = 64 GB)
— 18-bit tags (36 — 12 — 6 = 18).

‘ tag | setindex | offset |

k——"—— 18 bit —————k—— 12 bit ——* 6 bit
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Block Replacement

When bringing in new cache lines, an existing entry has to be evicted.
Different strategies are conceivable (and meaningful):
Least Recently Used (LRU)

m Evict cache line whose last access is longest ago.

— Least likely to be needed any time soon.

First In First Out (FIFO)

m Behaves often similar like LRU.

m But easier to implement.
Random

m Pick a random cache line to evict.

m Very simple to implement in hardware.

Replacement has to be decided in hardware and fast.
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What Happens on a Write?

To implement memory writes, CPU makers have two options:

Write Through

m Data is directly written to lower-level memory (and to the cache).

— Writes will stall the CPU.3
— Greatly simplifies data coherency.

Write Back
m Data is only written into the cache.
m A dirty flag marks modified cache lines (Remember the status field.)

— May reduce traffic to lower-level memory.
— Need to write on eviction of dirty cache lines.

Modern processors usually implement write back.

3Write buffers can be used to overcome this problem.
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Putting it all Together

To compensate for slow memory, systems use caches.

DRAM provides high capacity, but long latency.
SRAM has better latency, but low capacity.

]
[ ]
m Typically multiple levels of caching (memory hierarchy).
m Caches are organized into cache lines.

[ ]

Set associativity: A memory block can only go into a small number
of cache lines (most caches are set-associative).

Systems will benefit from locality.
m Affects data and code.
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Example: AMD Opteron

Example: AMD Opteron, 2.8 GHz, PC3200 DDR SDRAM
m L1 cache: separate data and instruction caches,
each 64 kB, 64 B cache lines, 2-way set-associative
m L2 cache: shared cache,
1 MB, 64 B cache lines, 16-way set-associative, pseudo-LRU policy
m L1 hit latency: 2 cycles
m |2 hit latency: 7 cycles (for first word)
m L2 miss latency: 160—180 cycles
(20 CPU cycles + 140 cy DRAM latency (50 ns) + 20 cy on mem. bus)
m L2 cache: write-back

m 40-bit virtual addresses

Source: Hennessy & Patterson. Computer Architecture—A Quantitative Approach.
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Performance (SPECint 2000)
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Assessment

Q. Why do database systems show such poor cache behavior?
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How can we improve data cache usage?
Consider, e.g., a selection query:
SELECT COUNT (%)

FROM lineitem
WHERE 1_shipdate = "2009-09-26"

m This query typically involves a full table scan.
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Table Scans (NSM)

Tuples are represented as records stored sequentially on a database page.

1_shipdate record

¥ \ [

cache block boundaries

m With every access to a 1_shipdate field, we load a large amount of
irrelevant information into the cache.

m Accesses to slot directories and variable-sized tuples incur additional
trouble.
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Row-Wise vs. Column-Wise Storage

Remember the “Architecture & Implementation” course?

The n-ary storage model (NSM, row-wise storage) is not the only choice.
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Column-Wise Storage

m All data loaded into caches by a “1_shipdate scan” is now actually
relevant for the query.

— Less data has to be fetched from memory.

— Amortize cost for fetch over more tuples.

— If we're really lucky, the full (1_shipdate) data might now
even fit into caches.

m The same arguments hold, by the way, also for disk-based systems.

m Additional benefit: Data compression might work better.

" Copeland and Khoshafian. A Decomposition Storage Model. SIGMOD 1985.
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MonetDB: Binary Association Tables

MonetDB makes this explicit in its data model.
m All tables in MonetDB have two columns (“head” and “tail”).

oid NAME AGE SEX oid NAME oid AGE oid SEX
o1 John 34 m o1 John o, 34 0 m
0> Angelina 31 f — 0o Angelina oo 31 oo, f
03 Scott 35 m 03 Scott o3 35 03 m
o4 Nancy 33 f oz Nancy os 33 os f

m Each column yields one binary association table (BAT).

m Object identifiers (oids) identify matching entries (BUNs).

m Oftentimes, oids can be implemented as virtual oids (voids).
— Not explicitly materialized in memory.
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NSM vs. DSM Trade-Offs

Figure 2 varying The Number Of Projected Attributes

Tuple recombination can cause s
considerable cost.

m Need to perform many joins.

cailwa

m Workload-dependent trade-off.

— MonetDB: positional joins
(thanks to void columns) e

._J
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Copeland and Khoshafian. A Decomposition Storage Model. SIGMOD 1985.
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Column Stores in Commercial DBMSs

Commercial databases have just recently announced column-store
extensions to their engines:

m Microsoft SQL Server:

m Represented as “Column Store Indexes”
m Available since SQL Server 11
m see Larson et al., SIGMOD 2011

= IBM DB2:

m |IBM announced DB2 “BLU Accelerator” last week, a column
store that is going to ship with DB2 10.5.

m BLU stands for “Blink Ultra”; Blink was developed at IBM
Almaden (,* Raman et al., ICDE 2008).
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PAX: Another Alternative

A hybrid approach is the PAX (Partition Attributes Accross) layout:

|l

m Divide each page into minipages. I I .

m Group attributes into them. —Ifl | }”3962
" Ailamaki et al. Weaving Relations for Cache Per- — }'3?9'2_1
formance. VLDB 2001. l l }pf:;’:'o

page O
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Processing Characteristics

Most systems implement the Volcano Operator 1
iterator model:

_ next () tuple
m Operators request tuples from their

input using next (). Operator 2
m Data is processed tuple at a time. next () tuple
m “pipelining”

_ Operator 3
m Each operator keeps its own state.

- : t l Ttu le
m DB implementation course next O P
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Tuple-At-A-Time Processing

Consequences:

m All operators in a plan run tightly interleaved.

— Their combined instruction footprint may be large.
— Instruction cache misses.

m Operators constantly call each other’s functionality.
— Large function call overhead.

m The combined state may be too large to fit into caches.

m F.g., hash tables, cursors, partial aggregates.
— Data cache misses.
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Example: TPC-H On MySQL

Example: Query Q1 from the TPC-H benchmark on MySQL.

SELECT 1_returnflag, 1_linestatus, SUM (1_quantity) AS sum_qty,
SUM(1_extendedprice) AS sum_base_price,
SUM(1_extendedpricex(1-1_discount)) AS sum_disc_price,
SUM(1_extendedpricex(1-1_discount)*(1+1_tax)) AS sum_charge,
AVG(1_quantity) AS avg_qty, AVG(l_extendedprice) AS avg_price,
AVG(1_discount) AS avg_disc, COUNT(*) AS count_order

FROM lineitem
WHERE 1_shipdate <= DATE ’1998-09-02’
GROUP BY 1_returnflag, 1_linestatus

m Scan query with arithmetics and a bit of aggregation.

Results taken from Peter Boncz, Marcin Zukowski, Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. C/IDR 2005.
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time [sec]  calls instr./call IPC function name

11.9 846M 6 0.64 ut_fold_ulint_pair

8.5 0.15M 27K 0.71 ut_fold_binary

58 77M 37 0.85 memcpy

3.1 23M 64 0.88 Iltem_sum_sum::update_field
3.0 6M 247 0.83 row_search_for_mysql

29 17M 79 0.70 ltem_sum_avg::update._field
2.6 108M 11 0.60 rec_get_bit field_1

2.5 6M 213 0.61 row_sel_store_mysql_rec
2.4  48M 25 0.52 rec_get_nth_field

2.4 60 19M 0.69 ha_print_info

24 5.9M 195 1.08 end_update

21 11M 89 0.98 field_conv

2.0 5.9M 16 0.77 Field_float::val_real

1.8 5.9M 14 1.07 Item field::val

1.5 42M 17 0.51 row_sel_field_store_in_mysql
1.4 36M 18 0.76 buf_frame_align

1.3 17™M 38 0.80 Item_func_mul::val

1.4 25M 25 0.62 pthread_mutex_unlock

1.2 206M 2 0.75 hash_get_nth_cell

1.2 25M 21 0.65 mutex_test_and_set

1.0 102M 4 0.62 rec_get_lbyte offs_flag

1.0 53M 9 0.58 rec_1_get_field_start_offs
0.9 42M 11 0.65 rec_get_nth_field_extern_bit
1.0 11m 38 0.80 Item_func_minus::val

0.5 5.9M 38 0.80 Item_func_plus::val



Observations:
m Only single tuple processed in each call; millions of calls.
m Only 10 % of the time spent on actual query task.
m Very low instructions-per-cycle (IPC) ratio.

Further:
m Much time spent on field access (e.g., rec_get_nth_field ()).
m NSM ~ polymorphic operators.
m Single-tuple functions hard to optimize (by compiler).
— Low instructions-per-cycle ratio.
— Vector instructions (SIMD) hardly applicable.

m Function call overhead.

38instr.
instr.
8 cycle

= 48 cycles vs. 3instr. for load/add/store assembly.
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Operator-At-A-Time Processing

MonetDB: operator-at-a-time processing.

m Operators consume and produce full columns.
m Each (sub-)result is fully materialized (in memory).
m No pipelining (rather a sequence of statements).

m Each operator runs exactly once.

Example:
sel_age := people_age.select(30, nil);
sel_id = sel_age.mirror().join(people_age);
sel_name := sel_age.mirror().join(people_name) ;
tmp = [-1(sel_age, 30);
sel_bonus := [*] (50, tmp);
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Operator-At-A-Time Processing

Function call overhead is now replaced by extremely tight loops.
Example: batval_int_add (---) (impl. of [+] (int, BAT[any,int]))

if (vv !'= int_nil) {
for (; bp < bg; bp++, bnp++) {
REGISTER int bv = *bp;
if (bv !'= int_nil) {
bv = (int) OP(bv,+,vv);

+
*bnp = bv;
+
} else {
for (; bp < bg; bp++, bnp++) {
*bnp = vv;
}
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Tight Loops

These tight loops

m conveniently fit into instruction caches,

m can be optimized effectively by modern compilers,
— loop unrolling

— vectorization (use of SIMD instructions)
m can leverage modern CPU features (hardware prefetching).
Function calls are now out of the critical code path.

Note also:

m No per-tuple field extraction or type resolution.

m Operator specialization, e.g., for every possible type.
m Implemented using macro expansion.
m Possible due to column-based storage.
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result
size
5.9M
5.9M
5.9M

ArrprprprprZZZ

time [ms]
127
134
134
235
233
232
134
290
329
0
206
210
274
274
165
165
163
163
144
112

3,724

bandwidth
(MB/s]

352
505
506
483
488
489
507
155
136
0
440
432
498
499
271
271
275
275
151
196

365

s0
s1
s2
s3
s4

s5:
s6 :
s7 :
s8:
s9:
r0 :
rl:
r2:
r3:
rd :

rb5
r6

r7 :
r8:

r9

MIL statement
:=select (1_shipdate, - --) .mark () ;
:=join (s0, 1_returnag) ;
:=join (s0, 1_linestatus);
:=join (s0, 1_extprice);
:=join (s0, 1_discount);
join (s0, 1_tax);
join (s0, 1_quantity) ;

group (s7, s2) ;
unique (s8.mirror ());
[+] (1.0, s5);
[-1(1.0,84);
[x]1(s3, r1);

[*] (s12, r0);

{sum} (r3, s8, s9);
:={sum}(r2, s8, s9);
:={sum}(s3, s8, s9);
{sum}(s4, s8, s9);
{sum}(s6, s8, s9) ;
:={count}(s7, s8, s9);
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Tuple-At-A-Time vs. Operator-At-A-Time

The operator-at-a-time model is a two-edged sword:

© Cache-efficient with respect to code and operator state.

® Tight loops, optimizable code.

® Data won't fully fit into cache.

— Repeated scans will fetch data from memory over and over.
— Strategy falls apart when intermediate results no longer fit into
main memory.

Can we aim for the middle ground between the two extremes?

tuple-at-a-time operator-at-a-time

I

X100 vectorized execution
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Vectorized Execution Model

Idea:

m Use Volcano-style iteration,

but:

m for each next () call return a large number of tuples
— a "vector" in MonetDB/X100 terminology.

Choose vector size

m large enough to compensate for iteration overhead (function calls,
instruction cache misses, ...), but

m small enough to not thrash data caches.

& Will there be such a vector size? (Or will caches be thrashed long
before iteration overhead is compensated?)
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Vector Size « Instruction Cache Effectiveness

Instructions executed
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m Vectorized execution quickly compensates for iteration overhead.

m 1000 tuples should conveniently fit into caches.
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Vectorized Execution in MonetDB /X100
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Effect on Query Execution Time
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Comparison of Execution Models

Overview over discussed execution models:

execution model tuple operator vector
query plans simple complex simple
instr. cache utilization poor extremely good  very good
function calls many extremely few very few
attribute access complex direct direct
most time spent on interpretation processing processing
CPU utilization poor good very good
compiler optimizations limited applicable applicable
materialization overhead very cheap expensive cheap
scalability good limited good

source: M. Zukowski. Balancing Vectorized Query Execution with
Bandwidth-Optimized Storage. PhD thesis, CWI Amsterdam. 2009.
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Vectorized Execution in SQL Server 11

Microsoft SQL Server supports vectorized (“batched” in MS jargon)
execution since version 11.
m Storage via new column-wise index.
— Includes compression and prefetching improvements.
m New operators with batch-at-a-time processing.

— Can combine row- and batch-at-a-time operators in one plan.
— CPU-optimized implementations.

 Per-Ake Larson et al. SQL Server Column Store Indexes. SIGMOD 2011.
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Column-Wise Index Storage

m Tables divided into row groups (=~ 1M rows)

m Each group, each column compressed independently.

A

c

D

|

Encode,
compress

Encode,
compress
\

Row group 3 |Row group 2 | Row group 1

Encode,
compress
-

Compressed
column segments

—
=
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Segment Organization

Blobs
S ——— Row
e
S —
€
¢ S —S>ummmmm
EO —>S0) Row
28 | S—— group 2
(7} ©
o B—
—S>r———— Row
—>—————  gowps

m Segment directory keeps track of segments.
m Segments are stored as BLOBs ( “binary large objects”)
~» Re-use existing SQL Server functionality.

m Statistics (min/max values) for each segment.
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|/O Optimizations

Column-store indexes are designed for scans.
m Compression (RLE, bit packing, dictionary encoding)
— Re-order row groups for best compression.
m Segments are forced to be contiguous on disk.
— Unlike typical page-by-page storage.
— Pages and segments are automatically prefetched.

data set uncompressed column-store idx ratio
cosmetics 1,302 88.5 14.7
SQM 1,431 166 8.6
Xbox 1,045 202 5.2
MSSales 642,000 126,000 5.1
Web Analytics 2,560 553 4.6
Telecom 2,905 727 4.0
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Batched Execution

Similar to the X100/Vectorwise execution model, batch operators in
SQL Server can process batches of tuples at once.

m Can mix batch- and row-based processing in one plan.
m Typical pattern:
— Scan, pre-filter, project, aggregate data early in the plan using

batch operators.
— Row operators may be needed to finish the operation.

m Good for scan-intensive workloads (OLAP) , not for point queries
(OLTP workloads).

m Internally, optimizer treats batch processing as new physical
property (like sortedness) to combine operators in a proper way.

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014



SQL Server: Performance

Performance impact (TPC-DS, scale factor 100, ~ 100 GB):

100s ¢
[ row store

[0 column store
10s +

1s+

100 ms ‘

Q1 Q2 Q3 Q4
query number (TPC-DS)

execution time

source: Larson et al. SQL Server Column Store Indexes.
SIGMOD 2011 (elapsed times, warm buffer pool).
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Alternative: Buffer Operators

A similar effect can be achieved in a less invasive way by placing buffer
operators in a pipelined execution plan.

] Orgam%e query plan into Operator 1 }Group 1
execution groups.
m Add buffer operator between next () tuple
execution groups. ( Buffer J
m Buffer operator provides
next () tuple

tuple-at-a-time interface to the

outside, @

m but batches up tuples

internally. next () tuple Group 2
/" Zhou and Ross. Buffering Database Operator 3
Operations for Enhanced Instruction next () l Ttuple

Cache Performance. SIGMOD 2004.
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Buffer Operator

A buffer operator can be plugged into every Volcano-style engine.

1 Function: next ()

// Read a batch of input tuples if buffer is empty.
2 if empty and !end-of-tuples then
3 while !full do
4 append child.next () to buffer ;
5 if end-of-tuples then
6 | break ;

// Return tuples from buffer
7 return next tuple in buffer :
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Buffer Operators in PostgreSQL

1.8
16 -
1.4 - —

12 A o | e e e L e
1_ — ] — ] — — ] —] — — —]

0.8 - o | e e e L e

0.6 - ——HHH
0.4 - ==
02 -

0 - .
AL 2 R I R S R N S I
N 99 S &

Elapsed Time (seconds)

@ L2 Cache Miss Penalty [l Trace Cache Miss Penalty
O Branch Misprediction Penalty

Jingren Zhou and Kenneth A. Ross. Buffering Database Operations for

Enhanced Instruction Cache Performance. SIGMOD 2004.
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In-Memory Joins

After plain select queries, let us now look at join queries:

SELECT COUNT (*)
FROM orders, lineitem
WHERE o_orderkey = 1_orderkey

(We want to ignore result construction for now, thus only count result tuples.)

We assume:
m no exploitable order,

m no exploitable indices (input might be an intermediate result), and
m an equality join predicate (as above).
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Hash join is a good match for such a situation.

To compute R S,
Build a hash table on the “inner” join relation S. }Build Phase

Scan the “outer” relation R and

probe into the hash table for each tuple r € R. }Jom Phase

1 Function: hash_join (R, S)

// Build Phase
2 foreach tuple s € S do
3 |_ insert s into hash table H ;

// Join Phase
4 foreach tuple r € R do
5 |_ probe H and append matching tuples to result ;
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hash table

; : \ 5
% — h/: \ —| 8
by l

@ build 2 probe

v O(N) (approx.)
v' Easy to parallelize
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Parallel Hash Join

Parallel Hash Join

shared
hash table
S
by
R
I |—h b2 h— |
v |
D
L |—h l
h—{ |
by
@ build ) probe

v Protect using locks; very low contention
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Modern Hardware

® Random access pattern
— Every hash table access a cache miss

Cost per tuple (build phase):
m 34 assembly instructions

hash join
m 1.5 cache misses is severely
m 3.3 TLB misses latency-bound
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Partitioned Hash Join

Thus: partitioned hash join  [Shatdal et al. 1994]

cache-sized one hash table

chunks per partition
S

R — h24 : khZ —| 51
| _’ : /3 —| s \
= L2 ’ ' 2 N c
S |—h : hi «— @
O 1 : ) S
| i_’ : | s3 7 I

[ |- hz< : >h2<— %
@ partition @ build @) probe @ partition

(parallelism: assign partitions to threads — no locking needed)
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Cache Effects

Build/probe now contained within caches:
m 15/21 instructions per tuple (build/probe)
m ~ 0.01 cache misses per tuple
m almost no TLB misses \/

Many partitions, far apart
Each one will reside on its own page

@ Partitioning is now critical
_)
‘>
— Run out of TLB entries (100-500)
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Cost of Partitioning

for all input tuples t do

2 1254 h < hash (t.key)
% out[pos[hl] « t
2 1004 pos[h]l < pos[h] +1
= end for

5 751

E

— 50+t

5

o

S 254

)}

e

50

4 5 6 7 8 9 10 11 12 13 14 15 16
radix bits

— Expensive beyond =~ 28-29 partitions.
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Multi-pass partitioning ( “radix partitioning™)

one hash table
per partition

N
R ] /*hQ/f& haels| [ =
> hy o \—/ e

l /L SEmR e L sl \ |
Slhia : _ a4 G
(2] —_— . . ] (2]
l \’ —)hly2/_> . /:'\ (_5:3'\/'71’2(— ‘/

o \’—>h2/fr\h2<— Sy / L LY |

pass 1 pass 2 \:/ pass 2 pass 1

@ partition @ build @) probe @ partition
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Multi-pass partitioning ( “radix partitioning™)

In practice:
mhy,..., hp use same hash function but look at different bits.
57 (001) 57 (001) {96 (000)
17 (001) 17 (001) Pl (001)
03 (011) 81 (001)| t ho — || 17 (001)
47 (111) 96 (000) 81 (001)
92 (100) 75 (001) 75 (001)
81 (001) h 4){ 03 (o11) }h _—{]66 (010)
20 (100) 1 66 (010) 2 — {03 (011)
06 (110) \ 92 (100) { 92 (100)
96 (000) 20 (100)| } ho — 1|20 (100)
37 (101) 37 (101) T~ {37 (101)
66 (010) { 47 (111) }h _——<{[06 (110)
75 (001) 06 (110) 2 — {47 (111)

© Jens Teubner - Data Processing on Modern Hardware - Summer 2014



Two-pass partitioning

0 125+ —a— single-pass partitioning
E —o— two-pass partitioning
- 100+t

35

)

5 751

£

— 50+

4

>

£

o 251

)}

o

s 0

7 8 9 10 11 12 13 14 15 16
radix bits

~
o+
o
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Hash join is O(Nlog N)!
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for all input tuples t do
h < hash (t.key) memory access
copy t to out[pos[h]]

pos[h] < pos[h] +1
end for

for all input tuples t do
h < hash (t.key)
buf [h] [pos[h] mod bufsiz] < t
if pos[h] mod bufsiz = 0 then
copy buf [h] to out[os[h] — bufsiz]

end if
pos[h] < pos[h] + 1 | memory access

end for

— TLB miss only every bufsiz tuples
— Choose bufsiz to match cache line size
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Software-Managed Buffers

S 105l —a— single-pass partitioning
< —4— two-pass partitioning
w0

% 100+ —e— sw-managed buffers
2

5 751

£

— 50+

4

>

£

o 251

)}

o

E=RN)

4 5 6 7 8 9 10 11 12 13 14 15 16
radix bits
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Plugging it together

n-part rdx n-part rdx n-part rdx n-part rdx
Nehalem  Sandy Bridge AMD Niagara T2

m 256 MiB X 4096 MiB
m e.g., Nehalem: 25cy/tpl ~ 90 million tuples per second

he

S

Blanas et al.: W partition HEbuild H probe 8

o 40] |86.4/64.6cy/tpl g
S :
P S
= %0
o ©
+ "
3 S
o 20+ :
2
8 10l 5
Q ™
> o~
S
E

[a]

>

<

Nehalem: 4 cores/8 threads; 2.26 GHz - Sandy Bridge: 8 cores/16 threads; 2.7 GHz
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Another Workload Configuration

M partition M build M probe

» ()] 0]
o o o

N
o

cycles per output tuple

n-part rdx n-part rdx n-part rdx n-part rdx
Nehalem Sandy Bridge AMD Niagara T2

m 977 MiB X 977 MiB
m e.g., Nehalem: 25cy/tpl =~ 90 million tuples per second

Nehalem: 4 cores/8 threads; 2.26 GHz - Sandy Bridge: 8 cores/16 threads; 2.7 GHz
AMD Bulldozer: 16 cores; 2.3 GHz - Niagara 2: 8 cores/64 threads; 1.2 GHz
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Resulting Overall Performance

Overall performance is influenced by a number of parameters:
m input data volume
m cluster size / number of clusters

m number of passes (plus number of radix bits per pass)

An optimizer has to make the right decisions at runtime.

m Need a detailed cost model for this.
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Joins and Column-Based Storage

@ With column-based storage, a single join is not enough.

T 1

X X —

N

join index
v

m Joining BATSs for key attributes yields a join index.
m Post-project BATSs for all remaining attributes.
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Joins and Column-Based Storage

Positional lookup?

m Makes post-projection joins “random access” ®

Thus:
m (Radix-)Sort by oids of larger relation
— Positional lookups become cache-efficient.

m Partially cluster by oids before positional join of smaller relation
— Access to smaller relation becomes cache-efficient, too.

Details: Manegold, Boncz, Nes, Kersten. Cache-Conscious
Radix-Decluster Projections. VLDB 2004.
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