Part V

The Relational Data Model
The relational model was proposed in 1970 by Edgar F. Codd:

“The term relation is used here in its accepted mathematical sense. Given sets S_1, S_2, \ldots, S_n (not necessarily distinct), R is a relation of these n sets if it is a set of n-tuples each of which has its first element from S_1, its second element from S_2, and so on.”

In other words, a relation R is a subset of a Cartesian product

$$R \subseteq S_1 \times S_2 \times \cdots \times S_n.$$

R contains n-tuples, where the ith field must take values from the set S_i (S_i is the ith domain of R).

A relation is a **set of n-tuples**, e.g., representing cocktail ingredients:

\[
\text{Ingredients} = \{ \langle \text{“Orange Juice”}, 0.0, 12, 2.99 \rangle, \\
\langle \text{“Campari”}, 25.0, 5, 12.95 \rangle, \\
\langle \text{“Mineral Water”}, 0.0, 10, 1.49 \rangle, \\
\langle \text{“Bacardi”}, 37.5, 3, 16.98 \rangle \}
\]

Relations can be illustrated as **tables**:

<table>
<thead>
<tr>
<th>Name</th>
<th>Alcohol</th>
<th>InStock</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange Juice</td>
<td>0.0</td>
<td>12</td>
<td>2.99</td>
</tr>
<tr>
<td>Campari</td>
<td>25.0</td>
<td>5</td>
<td>12.95</td>
</tr>
<tr>
<td>Mineral Water</td>
<td>0.0</td>
<td>10</td>
<td>1.49</td>
</tr>
<tr>
<td>Bacardi</td>
<td>37.5</td>
<td>3</td>
<td>16.98</td>
</tr>
</tbody>
</table>

→ Each column must have a **unique name** (within one relation).
A relation consists of **two parts**:

1. **Schema**: The **schema** of a relation is its list of attributes:

 \[\text{sch}(\text{Ingredients}) = \{ \text{Name}, \text{Alcohol}, \text{InStock}, \text{Price} \} \]

 Each attribute has an associated **domain** that specifies valid values for that column:

 \[\text{dom}(\text{Alcohol}) = \text{DECIMAL}(3,2) \]

 Often, **key constraints** are considered part of the schema, too.

2. **Value** (or **instance**): The **value/instance** \(\text{val}(R) \) of a relation \(R \) is the **set of tuples** (rows) that \(R \) **currently contains**.
Sets of Tuples

Relations are **sets of tuples:**

- The **ordering** among tuples/rows is **undefined**.
- A relation **cannot contain duplicate rows**.
 - A consequence is that every relation has a key. Use the set of all attributes if there is no shorter key.
Atomic Values

Attribute domains must be atomic:

- Column entries must not have an internal structure or contain “multiple values”.
- A table like

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Alcohol</th>
<th>SoldBy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Alcohol</td>
<td>Supplier</td>
</tr>
<tr>
<td>Orange Juice</td>
<td>0.0</td>
<td>A&P Supermarket</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shop Rite</td>
</tr>
<tr>
<td>Campari</td>
<td>25.0</td>
<td>Joe’s Liquor Store</td>
</tr>
</tbody>
</table>

is not a valid relation.
Since relations are sets in the mathematical sense, we can use mathematical formalisms to reason over relations.

In this course we will use

- **relational algebra** and
- **relational calculus**

to express queries over relational data.

Both are used **internally** by any decent relational DBMS.

- Knowledge of both languages will help in understanding SQL and relational database systems in general.
Relational Algebra

In mathematics, an algebra is a system that consists of
- a set (the carrier) and
- operations that are closed with respect to the set.

In the case of relational algebra,
- the carrier is the set of all finite relations.
- We’ll get to know its operations in a moment.

Algebraic operators are closed with respect to their set.
- Every operator takes as input one or more relations
 (The number of input operands to an operator \(f \) is called the arity of \(f \).)
- The output is again a relation.

Operators and relations can be composed into expressions (or queries).
Relational Algebra: Selection

The selection \(\sigma_p \) selects a subset of the tuples of a relation, namely those which satisfy the predicate \(p \).

\[
\sigma_{A=1} \begin{pmatrix}
1 & 3 \\
1 & 4 \\
2 & 5
\end{pmatrix} = \begin{pmatrix}
1 & 3 \\
1 & 4
\end{pmatrix}
\]

- Selection acts like a filter on its input relation.
- Selection leaves the schema of the relation unchanged:

\[
\text{sch}(\sigma_p(R)) = \text{sch}(R)
\]

- This best compares to the \texttt{WHERE} clause in SQL.
The **predicate** \(p \) is a Boolean expressions composed of

- literal **constants**,
- **attribute names**, and
- **arithmetic** \((+,-,\times,\ldots)\), **comparison** \((=,>,\leq,\ldots)\), and **Boolean operators** \((\land,\lor,\neg)\).

\(p \) is evaluated **for each tuple in isolation**.

→ **Quantifiers** \((\exists,\forall)\) or **nested relational algebra expressions** are **not** permitted within predicates.
Relational Algebra: Projection

The **projection** π_L eliminates all **attributes** (columns) of the input relation but those listed in the **projection list** L.

\[
\pi_{A,C} \left(\begin{array}{ccc}
A & B & C \\
1 & 3 & 2 \\
1 & 3 & 5 \\
2 & 5 & 2 \\
\end{array}\right) = \left(\begin{array}{cc}
A & C \\
1 & 2 \\
1 & 5 \\
2 & 2 \\
\end{array}\right)
\]

- Intuitively: “σ_p discards rows; π_L discards columns.”
- Database slang: “All attributes not in L are projected away.”
- Projection can also be used to **re-order** columns.
- Projection affects the **schema**: $\text{sch}(\pi_L(R)) = L$. (All attributes listed in L must exist in $\text{sch}(R)$.)
Projection might **change** the cardinality (*i.e.*, the number of rows) of a relation.

\[
\pi_{A,B} \left(\begin{array}{ccc}
A & B & C \\
1 & 3 & 2 \\
1 & 3 & 5 \\
2 & 5 & 2 \\
\end{array} \right) = \begin{array}{cc}
A & C \\
1 & 3 \\
2 & 5 \\
\end{array}
\]

- Remember that relations are **duplicate-free sets**!
Relational Algebra: Projection

Often, π_L is used also to express **additional functionality** (needed, *e.g.*, to implement SQL):

- **Column renaming:**

 \[\pi_{B_1 \leftarrow A_{i_1}, \ldots, B_k \leftarrow A_{i_k}}(R)\]

- **Computations:**

 \[\pi_{\text{Name, Value} \leftarrow \text{InStock} \ast \text{Price}}(\text{Ingredients})\]

Alternatively, a separate **re-naming operator** ϱ_L is often seen to express such functionality, *e.g.,*

\[\varrho_{B_1 \leftarrow A_{i_1}, \ldots, B_k \leftarrow A_{i_k}}(R)\]

Often, ‘:’ is used instead of ‘\leftarrow’ (*e.g.*, $\varrho_{B_1:A_{i_1}, \ldots, B_k:A_{i_k}}(R)$).
In SQL, duplicate rows are **not** eliminated automatically.

→ Request duplicate elimination explicitly using keyword `DISTINCT`.

```sql
SELECT DISTINCT Alcohol, InStock
FROM Ingredients
WHERE Alcohol = 0
```

In SQL, projection is expressed using the `SELECT` clause:

```math
\pi_{B_1\leftarrow E_1,\ldots,B_k\leftarrow E_k}(R)
```

```
SELECT DISTINCT E_1 AS B_1, \ldots, E_k AS B_k
FROM R
```
The **Cartesian product** of two relations R and S is computed by concatenating each tuple $r \in R$ with each tuple $s \in S$.

\[
\begin{array}{cc}
A & B \\
1 & 3 \\
2 & 5 \\
\end{array}
\times
\begin{array}{cc}
C & D \\
7 & 2 \\
3 & 4 \\
\end{array}
=
\begin{array}{cccc}
A & B & C & D \\
1 & 3 & 7 & 2 \\
1 & 3 & 3 & 4 \\
2 & 5 & 7 & 2 \\
2 & 5 & 3 & 4 \\
\end{array}
\]

The Cartesian product contains all columns from both inputs:

\[\text{sch}(R \times S) = \text{sch}(R) + + \text{sch}(S) \, .\]

\rightarrow R and S must not share any attribute names.

\rightarrow If they do, need to **re-name** first (using π/ϱ).
We already learned how a Cartesian product can be expressed in SQL:

```
SELECT *
FROM R, S
```

- SQL systems will not care about the duplicate column names. (In fact, they allow, e.g., computed values with no column name at all.)
- Unique column names will be **generated** by the system if necessary.
The two **set operators** \cup (**union**) and $-$ (**set difference**) complete the set of relational algebra operators:

\[
\begin{array}{c|c|c}
A & B \\
1 & 3 \\
1 & 4 \\
2 & 5 \\
\end{array} \cup \begin{array}{c|c|c}
A & B \\
1 & 3 \\
1 & 4 \\
2 & 5 \\
\end{array} = \begin{array}{c|c|c}
A & B \\
1 & 3 \\
1 & 4 \\
2 & 5 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
A & B \\
1 & 3 \\
1 & 4 \\
2 & 5 \\
\end{array} - \begin{array}{c|c|c}
A & B \\
1 & 3 \\
1 & 4 \\
2 & 5 \\
\end{array} = \begin{array}{c|c|c}
A & B \\
1 & 3 \\
2 & 5 \\
\end{array}
\]
Relational Algebra: Set Operations

Notes:

- In $R \cup S$ and $R - S$, R and S must be **schema compatible**:

$$\text{sch}(R \cup S) = \text{sch}(R - S) = \text{sch}(R) = \text{sch}(S).$$

- For $R \cup S$, R and S need not be disjoint.
- For $R - S$, S need not be a subset of R.
- In SQL, \cup and $-$ are available as **UNION** and **EXCEPT**, e.g.,

```sql
SELECT Name
FROM Cocktails
UNION
SELECT Name
FROM Ingredients
```
The **five basic operations of relational algebra** are:

1. σ_p Selection
2. π_L Projection
3. \times Cartesian product
4. \cup Union
5. \neg Difference

Any other relational algebra operator (we’ll soon see some of them) can be **derived** from those five.

A compact set of operators is a good basis for software (e.g., query optimizers) or database theoreticians to **reason** over a query or over the language.
Observe that the first four operators, σ, π, \times, and \cup, are **monotonic**:

- New data added to the database might only **increase**, but **never decrease** the size of their output. *E.g.*,

\[
R \subseteq S \Rightarrow \sigma_p(R) \subseteq \sigma_p(S) .
\]

- For queries composed only of these operators, database insertion **never invalidates** a correct answer.

- **Difference** ($-$) is the only **non-monotonic** operator among the basic five.
Monotonicity

For queries with a **non-monotonic semantics**, e.g.,

- “Which ingredients cannot be ordered at ‘Liquors & More’?”
- “Which ingredient has the highest percentage of alcohol?”
- “Which supplier offers all ingredients in the database?”

the operators σ, π, \times, \cup are **not sufficient** to formulate the query. Such queries **require** set difference.

✏️ **Formulate the first of these queries in relational algebra.**
The combination $\sigma \times$ occurs particularly often.

\rightarrow The $\sigma \times$ pair can be used to combine data from multiple tables, in particular by following foreign key relationships.

Example:

\[
\sigma_{\text{ContactPersons. ContactFor} = \text{Suppliers. SuppID}}(\text{Suppliers} \times \text{ContactPersons})
\]

Because of this, we introduce a short notation for the scenario:

\[
R \bowtie_p S := \sigma_p (R \times S)
\]

and call operation \bowtie_p a **join** (“R and S are joined”).
With a join operator, the example on the previous slide would read:

\[\text{Suppliers} \bowtie_{\text{ContactPersons}.\text{ContactFor}=\text{Suppliers}.\text{SuppID}} \text{ ContactPersons} \]

or (omitting redundant relation names in the predicate):

\[\text{Suppliers} \bowtie_{\text{ContactFor}=\text{SuppID}} \text{ ContactPersons} \]

The basic join operator exactly expands to a \(\sigma \times \) combination as shown on the previous slide!
The join operator could be used to express any predicate over R and S (though this tends to be not so meaningful in practice).

The pattern

$$R \bowtie_{A_i \theta B_j} S,$$

where A_i is an attribute from R, B_j an attribute from S, and $\theta \in \{=, \neq, <, \leq, >, \geq\}$ is often called a θ join (theta join).

The case $\theta \equiv =$ is also called an equi join.
The Natural Join

The most frequent join operation is an (equi) join that follows a foreign key constraint.

It is good practice to use the same attribute name for a primary key and for foreign keys that reference it.

E.g.,

<table>
<thead>
<tr>
<th>Cocktails</th>
</tr>
</thead>
<tbody>
<tr>
<td>CockID</td>
</tr>
<tr>
<td>:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlassID</td>
</tr>
<tr>
<td>:</td>
</tr>
</tbody>
</table>

(where GlassID in Cocktails references the GlassID in Glasses).
The Natural Join

To simplify notation for that common case, we introduce the following convention:

If no explicit predicate is given in the join operator, we interpret this as

- an equi join over all pairs of columns that have the same name

and

- the column used for joining is only reported once in the join result.

We call this situation a natural join.
The Natural Join

Based on the example schema on slide 109, the natural join

\[\text{Cocktails} \Join \text{Glasses} \]

would perform the (intuitively expected) join over \(\text{GlassID} \) columns (\(\text{Cocktails.GlassID} = \text{Glasses.GlassID} \)) and have the return schema

<table>
<thead>
<tr>
<th>CockID</th>
<th>CName</th>
<th>Alcohol</th>
<th>GlassID</th>
<th>GlassName</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

The example worked out, because I used \textbf{different column names} for all non-join attributes. Otherwise, \(\Join \) would have implicitly joined over, \textit{e.g., Name}, too.
Consider the join expression

\[\text{Suppliers} \Join \text{ContactPersons} \]

where we assume that \textit{ContactPerson} has a foreign key \textit{SupplID} (and no other column pairs with same name exist).

The query will report \textbf{all suppliers with their contact person}.

But:

- Suppliers where \textbf{no contact person} is stored in \textit{ContactPersons} will \textbf{not} appear in the result. The join effectively implies a \textbf{filtering behavior}.
Sometimes, this **filtering behavior** is **everything we really need** from the join operation.

E.g., “All suppliers where we know a contact person.”

\[
\pi_{Suppliers.\ast}(Suppliers \bowtie ContactPersons),
\]

For this situation, database people introduced another explicit notation:

\[
R \bowtie S := \pi_{\text{sch}(R)}(R \bowtie S) \quad R \bowtie_p S := \pi_{\text{sch}(R)}(R \bowtie_p S),
\]

i.e., compute the join \(R \bowtie S \), but keep only columns that come from \(R \).

This operation is also called a **semi join**.
What if I want the opposite, all suppliers where we do not know a contact person?
In other cases, the filtering effect is not desired.

To obtain all suppliers with their contact person without discarding Supplier tuples, use the outer join (here: left outer join):

Suppliers \times ContactPersons

Assuming the input

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>ContactPersons</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupplID</td>
<td>SuppName</td>
</tr>
<tr>
<td>1</td>
<td>Shop Rite</td>
</tr>
<tr>
<td>2</td>
<td>Liquors & More</td>
</tr>
<tr>
<td>3</td>
<td>Joe’s Liquor Store</td>
</tr>
</tbody>
</table>

what is the result of the above left outer join?
For certain kinds of queries, the \texttt{division} operator is useful.

Given two relations

\[
\begin{array}{c|c}
R & S \\
\hline
A & B \\
\vdots & \vdots \\
\end{array}
\quad \text{and} \quad
\begin{array}{c|c}
 & \\
\hline & B \\
\vdots & \vdots \\
\end{array}
\]

the division

\[R \div S \]

returns those \texttt{A} values \(a_i \), such that for every \texttt{B} value \(b_j \) in \(S \) there is a tuple \(\langle a_i, b_j \rangle \) in \(R \).
The division would be useful to, e.g., ask for suppliers that offer all ingredients:

$$Suppliers \Join (Supplies \div \pi_{\text{IngrID}}(Ingredients))$$
Algebraic Laws

Relational algebra operators may have interesting properties, e.g.,

- The join satisfies the **associativity condition**:

\[(R \Join S) \Join T \equiv R \Join (S \Join T)\,.

(We can thus often omit parentheses in “join chains”: \(R \Join S \Join T\).)

- Join is **not commutative**, however, **unless** it is followed by a projection (to re-order columns):

\[\pi_L(R \Join S) \equiv \pi_L(S \Join R)\,.

- If \(p\) only refers to attributes in \(S\), then

\[\sigma_p(R \Join S) \equiv R \Join \sigma_p(S)\]

(this is also known as **selection pushdown**).
Algebraic Expressions

Relational Algebra is an **expression-oriented language**.

→ Expressions consume and produce relations.
→ Results of expressions can be input to other expressions.

E.g.,

\[
\left(\left(\pi_{\text{IngrID}} \left(\sigma_{\text{Name} = 'Campari'} \text{Ingredients} \right) \right) \bowtie \text{Supplies} \right) \bowtie \text{Suppliers}
\]

Another way of looking at this is an **operator tree**:
Such operator trees imply an **evaluation order**.

- Computation proceeds **bottom-up** (the evaluation order of sibling branches is not defined).
- Operator trees are thus a useful tool to describe **evaluation strategy and order**.
Most relational **query optimizers** use operator trees internally.

→ The operator tree leads to a **query plan** or **execution plan**.

→ The **execution engine** is defined by operator implementations for all of the algebraic operators.

E.g., IBM DB2 execution plan:
Plan trees can be **re-written** using **algebraic laws**:

E.g.,

- **selection pushdown**: rewrite expressions to apply **selection predicates** early:
 \[\sigma_p(R \Join S) \rightarrow R \Join \sigma_p(S) \]
 (we saw this algebraic law before).

- **decide join order**:
 \[\pi_L(R \Join S \Join T) \rightarrow \pi_L(T \Join (S \Join R)) \]

The **rewrite direction** is often guided by **heuristics** and/or **cost estimations** (≈ Course ‘Architecture of Database Systems’).
The execution order implied by algebraic expressions gives relational algebra a **procedural nature**.

→ This is **good** for query optimization.

→ It is **not so good** for query formulation (e.g., by users).
 ■ Want to leave execution strategies up to the database.

For query formulation, we’d much rather like to have a **fully declarative way** to describe queries.

→ Specify **what** you want as a result, **not how** it can be computed.

→ “I want all tuples that look like . . .” or “I want all tuples that satisfy the predicate . . .”
In mathematics, a common way to describe sets is

\[\{ x \mid p(x) \} \]

meaning that the set contains all \(x \) that satisfy a predicate \(p \).

This inspires the **tuple relational calculus (TRC)**:

In a **tuple relational calculus query**

\[\{ t \mid F(t) \} \]

\(t \) is a **tuple variable**, \(F \) is a **formula** that describes how tuples \(t \) must look like to qualify for the result.
Formulas form the heart of the TRC. The language for formulas is a subset of first-order logic:

An atomic formula is one of the following:

- \(t \in \text{RelationName} \)
- \(t \leftarrow \langle X_1, \ldots, X_k \rangle \) (tuple constructor)
- \(r.a \theta s.b \) (\(r, s \) tuple variables; \(a, b \) attributes in \(r, s \); \(\theta \in \{=, <, \ldots \} \))
- \(r.a \theta \text{Constant} \) or \(\text{Constant} \theta r.a \)
A **formula** is then recursively defined to be one of the following:

- any atomic formula
- \(\neg F, F_1 \land F_2, F_1 \lor F_2 \)
- \(\exists t : F(t, \ldots) \)
- \(\forall t : F(t, \ldots) \)

where \(F \) and \(F_i \) are formulas and \(t \) a tuple variable.

Quantifiers \(\exists \) and \(\forall \) **bind** the variable \(t \); \(t \) may occur **free** in \(F \).

A **TRC query** is an expression of the form

\[
\{ t \mid F(t) \},
\]

where \(F \) is a formula and \(t \) is the only free variable in \(F \).
Examples

All tuples in Ingredients where Alcohol = 0:

\[\{ t \mid t \in \text{Ingredients} \land t.\text{Alcohol} = 0 \} \]

Names and prices of all non-alcoholic ingredients:

\[\{ t \mid \exists v : v \in \text{Ingredients} \land v.\text{Alcohol} = 0 \land t \leftarrow \langle v.\text{Name}, v.\text{Price} \rangle \} \]

Name all ingredients that can be ordered at ‘Shop Rite’:

\[\{ t \mid \exists u : u \in \text{Suppliers} \land \exists v : v \in \text{Supplies} \land \exists w : w \in \text{Ingredients} \\
\land u.\text{Name} = \text{‘Shop Rite’} \land u.\text{SupplID} = v.\text{SupplID} \\
\land v.\text{IngrID} = w.\text{IngrID} \land t \leftarrow \langle w.\text{Name} \rangle \} \]
Observe how Tuple Relational Calculus and SQL are related:

\[
\{ t \mid \exists u : u \in Suppliers \land \exists v : v \in Supplies \land \exists w : w \in Ingredients \\
\land u.Name = \text{‘Shop Rite’} \land u.SupplID = v.SupplID \\
\land v.IngrID = w.IngrID \land t \leftarrow \langle w.Name \rangle \}\}
\]

In SQL:

```sql
SELECT w.Name 
FROM Suppliers AS u, Supplies AS v, Ingredients AS w 
WHERE u.Name = \text{‘Shop Rite’} AND u.SupplID = v.SupplID 
AND v.IngrID = w.IngrID
```
Expressive Power

Idea:
- Use tuple relational calculus (\(\sim\) SQL) as a declarative front-end language for relational databases.

Questions:
- Can all relational algebra expressions also be expressed using TRC?
- Can all TRC queries be expressed using relational algebra?
 (That is, can all TRC queries be answered with an execution engine that implements the algebraic operators?)

Answer?
- No!
Expressive Power

Consider the TRC query

\[\{ t \mid \neg(t \in \text{Ingredients}) \} \]

(return all tuples that are not in the \text{Ingredients} table).

- The set of tuples described by this query is infinite.\(^9\)
- Relational algebra expressions operate over (and produce) only relations of finite size.
- The above TRC query is not expressible in relational algebra.

\(^9\)Or bound only by the (very large) domains for the attributes in \text{Ingredients}.
The query on the previous slide was an example of an \textit{unsafe} TRC query. In practice, queries with an infinite result are rarely meaningful.

\textbf{Thus:}

- \textbf{Restrict} TRC to allow only queries with a finite result. (We will refer to the set of allowed queries as the \textit{safe TRC}.)

\textbf{“Trick:”}

- Define safe TRC based on \textit{syntactic} restrictions on the formula language.

 \begin{itemize}
 \item Why “syntactic”?\end{itemize}
A formula F in the tuple relational calculus is called \textit{safe} iff

1. it contains no universal quantifiers (\forall),

2. in each $F_1 \lor F_2$, F_1 and F_2 have only one free variable and this is the \textit{same} variable in F_1 and F_2,

3. in all maximal conjunctive sub-formulae $F_1 \land F_2 \land \cdots \land F_k$, a variable t may be used in a formula F_i only \textbf{after} it has been limited ("bound") in a formula $F_j, j < i$.

A formula F_j limits t iff

- $F_j \equiv t \in R$ or
- $F_j \equiv t \leftarrow [X_1, \ldots, X_k]$
- t appears free in F_j and F_j itself is a safe TRC formula.

All free variables of a maximal conjunctive sub-formula must be limited.

4. negation only occurs in a conjunction as in \textit{3}.
SQL is also “safe” in that sense.

→ All tuple variables must be bound (“limited”) in the FROM part.

SQL is not purely based on safe TRC, but includes a combination of

- Safe TRC,

- Relational Algebra, (𐌄 Which example did we already see?)

- Additional constructs, such as aggregation.
Theorem

Relational algebra and safe tuple relational calculus are equivalent.

This equivalence

- guarantees expressiveness, e.g., for SQL,
- yet allows query compilation into relational algebra (for query optimization and execution).

The theorem can be proven in a constructive way:

- Give translation rules that compile any safe TRC query into relational algebra and vice versa.
- → The TRC → algebra direction already instructs us how to build a query compiler.
Goal: A function TRC that translates any algebra expression into a Safe TRC formula.

The interesting part is to derive the **formula** F to construct $\{ t \mid F(t) \}$.

Thus:
- Find $\mathbb{T}(v, \text{Exp})$. Given the name of a variable v and an algebraic (sub)expression Exp, $\mathbb{T}(v, \text{Exp})$ constructs a formula, such that

\[
\text{TRC}(\text{Exp}) := \{ t \mid \mathbb{T}(t, \text{Exp}) \}
\]

is the TRC equivalent for Exp and $\mathbb{T}(t, \text{Exp})$ is safe.
Relational Algebra → Safe TRC

Example:

\[T(v, R) := v \in R. \]

Then,

\[TRC(R) := \{ t \mid T(t, R) \} = \{ t \mid t \in R \}. \]

Strategy: Syntax-Driven Translation:

\[T(v, R) := v \in R \quad (\text{see above}) \]

\[T(v, \sigma_p(Exp)) := ? \]

\[T(v, \pi_L(Exp)) := ? \]

\[T(v, Exp_1 \times Exp_2) := ? \]

\[T(v, Exp_1 \cup Exp_2) := ? \]

\[T(v, Exp_1 - Exp_2) := ? \]

(Next: Find a translation for each of the five basic algebra operators.)
 Algebra selection operator σ_p:

\[
\mathbb{T}(\nu, \sigma_p(Exp)) \equiv \mathbb{T}(\nu, Exp) \land p(\nu),
\]

where $p(\nu)$ is the predicate p in σ_p and all attribute names in p are qualified using the variable name ν.

→ The resulting formula is safe if the result of the recursive construction $\mathbb{T}(\nu, Exp)$ is safe.

Remaining rules for $\mathbb{T}(\nu, Exp) \rightarrow$ exercises.
Goal: A function Alg that translates any safe TRC query into a valid algebra expression.

Safe TRC cannot simply be translated bottom-up, because some of its sub-formulas might be un-safe if considered in isolation.

Example: $\{ t \mid t \in R \land t \notin S \}$ is legal, but the sub-formula $t \notin S$ would violate rule 3 for safe TRC on slide 132 (and $\{ t \mid \neg (t \in S) \}$ is not expressible in relational algebra).
Thus:

Carry **context information** through the translation process with help of an auxiliary function \mathcal{A}:

\[
\mathcal{A}lg(\{ t \mid F(t) \}) := \pi_{t,*}(\mathcal{A}(\{\}, F \land \text{true}))
\]

Idea:

- As input, \mathcal{A} receives a **partial algebra plan** (initialized with $\{\}$) and a **TRC formula**.
- \mathcal{A} “consumes” a conjunctive formula $F_1 \land \cdots \land F_k$ piece-by-piece.
- The partial algebra plan is used to provide context and accumulate the overall compilation result.
- We use $\{\} \times E := E$ and $F \equiv F \land \text{true}$ to simplify compilation rules.
Safe TRC → Relational Algebra

Let us look at simple formulas first:

\[\mathcal{A}(E, t \in R \land F) := \mathcal{A}(E \times R \leftarrow \pi_{t.A_1:A_1,\ldots,t.A_k:A_k}, F) \] (1)

\[\mathcal{A}(E, t \leftarrow [X_1,\ldots,X_k] \land F) := \mathcal{A}(\pi_{\text{sch}(E)}, t.A_1:X_1,\ldots,t.A_k:X_k, E, F) \] (2)

\[\mathcal{A}(E, X \theta Y \land F) := \mathcal{A}(\sigma_{X \theta Y} E, F) \] (3)

\[\mathcal{A}(E, \text{true}) := E \] (4)
Translation of

\[\{ r \mid r \in R \land s \in S \land r.A = s.A \land s.B = 42 \} \]

The above TRC expression is not quite correct. Why?
Looks familiar?

This is (almost) exactly how your database system compiles SQL!

```
SELECT p.*
FROM Professors AS p, Courses AS c
WHERE p.ID = c.heldBy
  AND c.courseID = 42
↓
{ p | p ∈ Professors ∧ c ∈ Courses
  ∧ p.ID = c.heldBy ∧ C.courseID = 42 }↓
πp.⋆(σp.courseID=42 (Professors ⋂ p.ID=c.heldBy Courses))
```
Safe TRC → Relational Algebra

Time to complete our rule set...

\[\forall (E, (\exists v : G) \land F) := \forall \left(\begin{array}{c} \pi_{sch}(E) \\ \forall(E, G \land true) \end{array}, F \right) \] (5)

\[\forall (E, (G_1 \lor G_2) \land F) := \forall \left(\begin{array}{c} \bigcup \forall(E, G_1 \land true) \quad \forall(E, G_2 \land true) \end{array}, F \right) \] (6)

\[\forall (E, \neg G \land F) := \forall \left(\begin{array}{c} L \quad \pi_{sch}(E) \\ \forall(E, G \land true) \end{array}, F \right) \] (7)
Notes:

- In Rule (5), the \exists quantifier introduces a new variable, which appears free in G. After compiling G, we “project away” the additional column(s).

- In Rule (6), both parts of the \cup must be schema-compatible, because (by rule 2 for safe TRC on slide 132) G_1 and G_2 must have the same free variable.

- Observe, in Rule (7), how we can make use of the difference operator, because we made sure that all free variables in G were bound previously (and are thus part of E).
Translation of

\{ r \mid r \in R \land (\exists s : s \in S \land r.A = s.A \land s.B = 42) \}

This is the correct substitute TRC expression (and its translation) for the one shown earlier on slide 141.
Suppose a database contains a *Flights* relation

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>FlightNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZRH</td>
<td>DRS</td>
<td>OL 277</td>
</tr>
<tr>
<td>DRS</td>
<td>MUC</td>
<td>LH 2127</td>
</tr>
</tbody>
</table>

where a tuple $\langle f, t, n \rangle$ indicates that there is a flight from f to n with flight number n.

The algebra expression

$$\pi_T o (\pi_F r o m \leftarrow T o (\sigma_F r o m = \text{'ZRH'} (Flights)) \times Flights)$$

then returns airport codes for all destinations that can be reached with one stop from Zurich.
More generally, we can use an \textit{n-fold self join} to find destinations reachable with \textit{n} stops.

\begin{itemize}
 \item We can write down that self join for every known value of \textit{n}.
 \item But it is \textbf{impossible} to express the \textbf{transitive closure} in relational algebra.
 \quad (\textit{i.e.}, we cannot write a query that returns reachable destinations with a trip of \textbf{any} length.)
\end{itemize}

This implies that relational algebra is \textbf{not computationally complete}.

\begin{itemize}
 \item This might seem unfortunate. But it is a consequence of the desirable guarantee that \textbf{query evaluation always terminates} in relational algebra.
\end{itemize}
Expressiveness of SQL

SQL is slightly more powerful than relational algebra (≡ Safe TRC), e.g.,

- **aggregation** (e.g., the SQL `COUNT` operation)
- (very limited) support for **recursion**
 Reachability queries as shown before can actually be expressed in recent versions of SQL.
- explicit support for special use cases (e.g., windowing)

These extensions have been carefully designed to keep the **termination guarantees**, however.
Wrap-Up

Relations:
- finite sets of tuples

Relational Algebra:
- expression-based query language
 - operators σ_p, π_L, \times, \cup, $-$, \bowtie_p, ...
 - used internally by DBMSs for optimization and evaluation

(Safe) Tuple Relational Calculus:
- declarative query language
 - $\{t \mid F(t)\}$
 - TRC inspired the design of the SQL language

Expressiveness:
- relational algebra $= \text{safe TRC} \subseteq \text{SQL}$