Part VI

Graphics Processors (GPUs)

I adopted some of this material from a slide set of René Müller (now with IBM Research).
While general-purpose CPUs increasingly feature “multi-media” functionality,

graphics processors become increasingly general-purpose.
Graphics Pipeline

App → API → Front-End
vertices → Transform & Lighting → Geometry & Primitive Assembly → Rasterization

connectivity information

Frame Buffer → Raster & Operations

Fragments

Scissor, Alpha, Stencil, Depth → Test

Fragment Coloring & Texture
Some tasks in the pipeline lend themselves to in-hardware processing.

- Embarrassingly parallel
- Few and fairly simple operations
- Hardly need to worry about caches, coherency, etc.

Early cards did the end of the pipeline in hardware; today’s cards can do much more.
Toward Programmable GPUs

The programmability of GPUs has improved dramatically.

- hard-coded **fix-function pipeline**
- customization through **parameters**
- programmable **shaders**
 - vertex shader
 - geometry shader
 - fragment shader (fragment: pixel)
- “general-purpose” GPUs (GPGPUs)

Today: C-like languages (e.g., CUDA, OpenCL)
Database Processing in Early GPUs

All screen pixels rendered into **frame buffer**, separated into:
- **color** typically an RGB color value
- **depth** depth associated with this pixel; used to distinguish scene items in the front from those in the back
- **stencil** a mask that can be set to only render parts of the screen values.

Idea: (example: predicate on attribute and constant)
- Bring data set into **depth buffer** of the GPU.
- Evaluate comparison as **depth test** (Booleans as **stencil tests**).

Problems

In practice, the idea is/was more tricky

- No direct access to GPU buffers from CPU.
 - Write fragment program to render texture into depth buffer.
- Data movement host ↔ GPU is expensive.
- Limited amounts of memory on graphics card.
- Mapping task → GPU program often convoluted.
- Limited support for data types and precision.
 - Focus on floating-point arithmetics (often with limited precision and/or standards-compliance).

Modern cards and tools ease these problems significantly.
Original GPU design based on graphics pipeline not flexible enough.
→ geometry shaders idle for pixel-heavy workloads and vice versa
→ unified model with general-purpose cores

Thus: Design inspired by CPUs, but different

Rationale: Optimize for **throughput**, not for **latency**.
CPUs vs. GPUs

CPU: task parallelism
- relatively heavyweight threads
- 10s of threads on 10s of cores
- each thread managed explicitly
- threads run different code

GPU: data parallelism
- lightweight threads
- 10,000s of threads on 100s of cores
- threads scheduled in batches
- all threads run same code
 → SPMD, single program, multiple data
Threads on a GPU

To handle 10,000s of threads efficiently, keep things simple.

- Don’t try to *reduce* latency, but *hide* it.
 - Large thread pool rather than caches
 (This idea is similar to SMT in commodity CPUs ↑ slide 130.)

- Assume *data parallelism* and restrict *synchronization*.
 - Threads and small *groups* of threads use local memories.
 - Synchronization only within those groups (more later).

- Hardware *thread scheduling* (simple, in-order).
 - Schedule threads in *batches* (∼ “warps”).
OpenCL Computation Model

Host system and **co-processor** (GPU is only one possible co-processor.)

Host triggers
- data copying
 - host ↔ co-processor,
- invocations of **compute kernels**.

Host interface: **command queue**.

- Host
 - copy data
 - launch
 - work
 - wait
 - sync
 - execute
 - work
 - wait
 - sync
 - copy data
- Device (GPU)
 - Kernel 1
 - Kernel 2
A traditional loop

```c
for (i = 0; i < nitems; i++)
    do_something(i);
```

becomes a data parallel kernel invocation in OpenCL (map):

```c
status = clEnqueueNDRangeKernel (  
    commandQueue,  
    do_something_kernel, ..., &nitems, ...);
```

```c
__kernel void do_something_kernel(...) {
    int i = get_global_id(0);
    ...;
}
```
Kernel Invocation

Idea: Invoke kernel for each point in a problem domain

- e.g., 1024 × 1024 image, one kernel invocation per pixel; → 1,048,576 kernel invocations ("work items").
- Don’t worry (too much) about task → core assignment or number of threads created; runtime does it for you.
- Problem domain can be 1-, 2-, or 3-dimensional.

- Can pass global parameters to all work item executions.
- Kernel must figure out work item by calling get_global_id().
OpenCL defines a **C99-like** language for compute kernels.

- Compiled **at runtime** to particular core type.
- Additional set of built-in functions:
 - Context (\textit{e.g.}, \texttt{get_global_id()}); synchronization.
 - Fast implementations for special math routines.

```c
__kernel void square (__global float *in,
                        __global float *out)
{
    int i = get_global_id(0);
    out[i] = in[i] * in[i];
}
```
Work Items and Work Groups

Work items may be grouped into work groups.

- Work groups ↔ scheduling batches.
- Synchronization between work items only within work groups.
- There is a device-dependent limit on the number of work items per work group (can be determined via clGetDeviceInfo ()).
- Specify items per group when queuing the kernel invocation.
- All work groups must have same size (within one invocation).

E.g., Problem space: 800 × 600 items (2-dimensional problem).
→ Could choose 40 × 6, 2 × 300, 80 × 5, . . . work groups.
Example: NVIDIA GPUs

NVIDIA GTX 280

- 10 Thread Processing Clusters
- 10×3 Streaming Multiprocessors
- $10 \times 3 \times 8$ Scalar Processor Cores
 → More like ALUs (↗ slide 212)
- Each Multiprocessor:
 - 16k 32-bit registers
 - 16 kB shared memory
 - up to 1024 threads
 (may be limited by registers and/or memory)

Source: www.hardwaresecrets.com
Inside a Streaming Multiprocessor

- 8 Scalar Processors (Thread Processors)
 - single-precision floating point
 - 32-bit and 64-bit integer
- 2 Special Function Units
 - sin, cos, log, exp
- Double Precision unit
- 16 kB Shared Memory
- Each Streaming Multiprocessor: up to 1,024 threads.
- GTX 280: 30 Streaming Multiprocessors
 → 30,720 concurrent threads (!)
The third generation SM introduces several architectural innovations that make it not only the most powerful SM yet built, but also the most programmable and efficient.

- 32 “cores” (thread processors) per streaming multiprocessor (SM)
- but fewer SMs per GPU: 16 (vs. 30 in GT200 architecture)
- 512 “cores” total
- “cores” now double-precision-capable

Source: nVidia Fermi White Paper
Scheduling in Batches

- In SM threads are scheduled in units of 32, called **warps**.
- **Warp**: Set of 32 parallel threads that start together at the same program address.
- For memory access warps are split into **half-warps** consisting of 16 threads.
- Warps are scheduled with zero-overhead.
- Scoreboard is used to track which warps are ready to execute.
- GTX 280: 32 warps per multiprocessor (1024 threads).
- newer cards: 48 warps per multiprocessor (1536 threads).
SPMD / SIMT Processing

- **SIMT**: Single Instruction, Multiple Threads
- All threads execute the same instruction.
- Threads are split into warps by increasing thread IDs (warp 0 contains thread 0).
- At each time step scheduler selects warp ready to execute (*i.e.*, all its data are available)
- nVidia Fermi: dual issue; issue two warps at once\(^a\)

\(^a\)no dual issue for double-precision instr.
Warps and Latency Hiding

Some runtime characteristics:

- Issuing a warp instruction takes **4 cycles** (8 scalar processors).
- Register write-read latency: **24 cycles**.
- Global (off-chip) memory access: ≈ 400 cycles.

Threads are executed **in-order**.

→ **Hide latencies** by executing other warps when one is paused.
→ Need **enough warps** to fully hide latency.

E.g.,

- Need $24/4 = 6$ warps to hide register dependency latency.
- Need $400/4 = 100$ instructions to hide memory access latency. If every 8th instruction is a memory access, $100/8 \approx 13$ warps would be enough.
Resource Limits

Ideally: 32 warps per multiprocessor (1024 threads)

But: Various *resource limits*

- limited number of 32-bit *registers* per multiprocessor

 E.g.: 11 registers per thread, 256 threads/items per work group.

 CUDA compute capability 1.1: 8,192 registers per multiprocessor.

 → max. 2 work groups per multiprocessor \((3 \times 256 \times 11 > 8192)\)

- 48 kB *shared memory* per multiprocessor (compute cap. 2.0)

 E.g.: 12 kB per work group

 → max. 4 work groups per multiprocessor

- 8 *work groups* per multiprocessor; max. 512 work items per work group

- Additional constraints: *branch divergence*, *memory coalescing*.

Occupancy calculation (and choice of work group size) is complicated!
Executing a Warp Instruction

Within a warp, all threads execute same instructions.

→ What if the code contains branches?

```c
if (i < 42)
    then_branch();
else
    else_branch();
```

- If one thread enters the branch, all threads have to execute it.
 → Effect of branch execution discarded if necessary.
 ~ Predicated execution (↗ slide 106).
- This effect is called branch divergence.
- Worst case: all 32 threads take a different code path.
 → Threads are effectively executed sequentially.
OpenCL Memory Model

compute device

- private memory
- work item 1
- work item 2
- compute unit 1
- local memory
- compute unit 2
- private memory
- work item 1
- work item 2
- local memory
- global memory

host

- host memory
NVIDIA/Cuda uses a slightly different terminology:

<table>
<thead>
<tr>
<th>OpenCL</th>
<th>Cuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>private memory</td>
<td>registers</td>
</tr>
<tr>
<td>local memory</td>
<td>shared memory</td>
</tr>
<tr>
<td>global memory</td>
<td>global memory</td>
</tr>
</tbody>
</table>

On-chip memory is **significantly** faster than off-chip memory.
Like in CPU-based systems, GPUs access global memory in chunks (32-bit, 64-bit, or 128-bit segments).

→ Most efficient if accesses by threads in a half-warp coalesce.

E.g., NVIDIA cards with compute capability 1.0 and 1.1:

- Coalesced access → 1 memory transaction

- Misaligned → 16 memory transactions (2 if comp. capability ≥ 1.2)
Coalescing Example

Example to demonstrate coalescing effect:

```c
__kernel void
copy (__global unsigned int *din,
     __global unsigned int *dout,
     const unsigned int offset)
{
    int i = get_global_id (0);
    dout[i] = din[i + offset];
}
```

⚠️ **Strided access** causes similar problems!
Shared memory (OpenCL: “local memory”):
- **fast** on-chip memory (few cycles latency)
- throughput: 38–44 GB/s per multiprocessor(!)

- partitioned into **16 banks**
 - 16 threads (1 half-warp) can access shared memory simultaneously if and only if they all access a different bank.
 - Otherwise a **banking conflict** will occur.

- Conflicting accesses are **serialized**
 - (potentially significant) **performance impact**
Bank Conflicts to Shared Memory

stride width: 1 word

→ no bank conflicts

© Jens Teubner · Data Processing on Modern Hardware · Summer 2013
Bank Conflicts to Shared Memory (cont.)

- **stride width: 2 words**
 - Thread 0 to Bank 0
 - Thread 1 to Bank 1
 - Thread 2 to Bank 2
 - Thread 3 to Bank 3
 - Thread 4 to Bank 4
 - Thread 5 to Bank 5
 - Thread 6 to Bank 6
 - Thread 7 to Bank 7
 - Thread 8 to Bank 8
 - Thread 9 to Bank 9
 - Thread 10 to Bank 10
 - Thread 11 to Bank 11
 - Thread 12 to Bank 12
 - Thread 13 to Bank 13
 - Thread 14 to Bank 14
 - Thread 15 to Bank 15

 → **2-way bank conflicts**

- **stride width: 4 words**
 - Thread 0 to Bank 0
 - Thread 1 to Bank 1
 - Thread 2 to Bank 2
 - Thread 3 to Bank 3
 - Thread 4 to Bank 4
 - Thread 5 to Bank 5
 - Thread 6 to Bank 6
 - Thread 7 to Bank 7
 - Thread 8 to Bank 8
 - Thread 9 to Bank 9
 - Thread 10 to Bank 10
 - Thread 11 to Bank 11
 - Thread 12 to Bank 12
 - Thread 13 to Bank 13
 - Thread 14 to Bank 14
 - Thread 15 to Bank 15

 → **4-way bank conflicts**
Exception: Broadcast Reads

Broadcast reads do **not** lead to a bank conflict.

- All threads must read the **same** word.
Thread Synchronization

Threads may use built-in functions to synchronize within work groups.

- **barrier** *(flags)* Block until all threads in the group have reached the barrier. Also enforces memory ordering.

- **mem_fence** *(flags)* Enforce memory ordering: all memory operations are committed before thread continues.

```c
for (unsigned int i = 0; i < n; i++)
{
    do_something();
    barrier(CLK_LOCAL_MEM_FENCE);
}
```

If barrier occurs in a **branch**, same branch must be taken by all **threads** in the group (danger: deadlocks or unpredictable results).
Synchronization Across Work Groups

To synchronize across work groups,
- use *in-order* command queue and queue multiple kernel invocations from the host side
 → Can also queue *markers* and *barriers* to the command queue.

or

- use OpenCL *event mechanism*.
 → Can also synchronize host ↔ device and kernel executions in *multiple command queues*.

To wait on host side until all queued commands have been completed,
use `clFinish(command queue)`.
To summarize,

- GPUs provide **high degrees of parallelism** that can be programmed using a **high-level language**.

But:

- GPUs are not simply “multi-core processors.”
- Unleashing their performance requires significant efforts and great care for details.

Also note that

- GPUs provide lots of **Giga-FLOPS**.
 - But rather few applications really need raw GFLOPS.